Солнечная батарея

Как работает солнечная батарея — бесплатное электричество для вашего дома

Когда деньги, вложенные в батареи, окупятся, электричество в доме будет действительно бесплатным

Заинтересованы в бесплатной электроэнергии на дачном участке или в загородном доме? Я расскажу про принцип действия и про устройство солнечной батареи, а вы сможете решить, подходит ли такое устройство для того, чтобы сделать дом или дачу энергонезависимыми.

Что такое солнечные батареи и как они работают

Солнечная батарея (СБ) — это устройство, позволяющее преобразовать световую энергию солнечных лучей в электрический ток. В основе приборов применяются фотоэлементы — полупроводниковые фотоэлектрические преобразователи.

Пример того, как небольшой поселок можно сделать энергонезависимым

Современные модификации солнечных батарей различаются такими параметрами, как производимая мощность и габариты. Поэтому эти устройства с одинаковым успехом применяются в самых разных конструкциях, начиная с портативных калькуляторов и оканчивая солнечными электростанциями.

На схеме показано, из чего состоит наиболее распространённая батарея солнечного света

Обратите внимание

При сборке фотоэлемента на пластину монокристаллического кремния с шириной запрещенной зоны 5 эВ наносится слой фосфора и бора. В слое кремния с добавками фосфора (катод) возникают свободные электроны. В слое кремния с бором (анод) образуются отсутствующие электроны, так называемые «дырки».

На схеме показан принцип работы кремниевого фотоэлемента, начиная с воздействия света на поверхность и оканчивая отведением тока

Когда на поверхность фотоэлемента попадает квант света, происходит движение частиц из одного слоя в другой. За счет движения частиц, высвобождается определенное количество энергии, то есть создается разность потенциалов, которую определяет интенсивность света.

Медные дорожки нескольких пластин параллельно спаиваются друг с другом

Для того чтобы высвобожденную энергию вывести с каждой отдельно взятой пластины, на поверхность фотоэлектрических преобразователей нанесены металлизированные дорожки.

Мощность собранной батареи определяется ее площадью. То есть, чем больше отдельных пластин будет закреплено на панели, тем больше электричества будет выработано.

Разновидности преобразующих панелей и их устройство

Иллюстрации Классификация по типу солнечных элементов
Панели с кремниевыми фотоэлементами. СБ с кремниевыми фотоэлементами это самый распространенный тип панелей (около 85% от всего объёма производимых солнечных батарей).
С развитием технологий, цена таких производственных процессов, как выращивание кремния и нанесение легирующего покрытия снижается. Более того, кремний — это самый распространенный элемент в составе земной коры.
Именно поэтому будущее солнечной энергетики в ближайшие 50 лет будут определять кремниевые СБ.
Недостаток кремниевых СБ — это низкий коэффициент светопоглощения из-за того, что кремний не прямозонный полупроводник. В итоге фотоэлементы производятся с увеличенной толщиной, что негативно сказывается на весе устройства.
Тонкопленочные панели. Такие СБ характеризуются более высоким коэффициентом светопреобразования, в сравнении с кремниевыми аналогами.
Применение прямозонных полупроводников в качестве фотоэлементов, позволяет вырабатывать оптимальное количество энергии при толщине СБ в пару микрон. Панели с такими фотоэлементами немного весят и могут устанавливаться своими руками на крыши жилых домов, на крыши автомобилей и т.п.
Существенное преимущество тонкопленочных СБ — способность эффективно работать даже в облачный день.
Концентраторные модули. Это самые дорогие, но и самые эффективные СБ (эффективность светопреобразования около 44%).
В конструкции этих фотоэлементов применены полупроводники нескольких типов, расположенные слоями в определённом порядке. Например, распространённый вариант: Ge — полупроводник подложка, GaAs — средний слой и GaInP — верхний слой.
За счет особого расположения полупроводников обеспечивается эффективное усвоение солнечной энергии, как в ясную, так и в облачную погоду. Сборка СБ на основе концентраторных модулей технически сложна, а потому цена устройств высокая.
Органические батареи. Эти панели пока что отсутствуют в продаже. Фотоэлементы в составе панелей работают по принципу фотосинтеза растений. Для этого поверхность фотоэлементов покрыта слоем светочувствительной краски.
На фото — модель дерева с листьями из органических батарей.
Иллюстрации Классификация кремниевых фотоэлементов в соответствии с типом кристалла.
Фотоэлектрические преобразователи из монокристаллического кремния (КПД 15-20%). Основа фотоэлемента — чистый кремниевый монокристалл, выращенный из кремниевого расплава.
Готовые монокристаллы имеют форму стержня, которому придается форма куба. Куб нарезается на пластины с толщиной 180 Мк.
Нарезанные пластины очищаются и армируются защитным покрытием. Поверхность подвергается металлизации, после чего на нее наносится антирефлексионное покрытие.
Фотоэлектрические преобразователи из поликристаллического кремния (КПД 10-15%). Поликристаллический кремний выращивается из остывшего кремниевого расплава.
Из-за низкой температуры расплава процесс формирования стержней протекает медленно. Тем не менее, инструкция их производства проще формирования монокристаллов.
Фотоэлектрические преобразователи из аморфного кремния (КПД 8-10%). Производство аморфного кремния выполняется по технологии испарительной фазы, а именно, кремниевая пленка крепится на несущем материале и армируется защитным покрытием.
Преимущества технологии — малая себестоимость и возможность изготавливать панели большой площади.
Недостаток фотоэлементов из аморфного кремния — малый эксплуатационный ресурс из-за ускоренной деградации.

Эффективное расположение

Чтобы эксплуатация батарей была наиболее эффективной, устройство должно вырабатывать электричество наибольшее количество времени в течение светового дня. Добиться максимальной эффективности использования можно за счет правильного расположения плоскости относительно траектории прохождения солнца.

Иллюстрации Популярные способы расположения
Статичное расположение. Солнечная панель располагается с небольшим наклоном в восточном направлении. В итоге солнечный свет будет попадать на фотоэлементы большую часть дня.
Изменяемое расположение. Увеличение эффективности энергопреобразования возможно за счет установки панели фотоэлементов на подвижной конструкции.
Благодаря такому решению плоскость, в зависимости от положения солнца, будет менять угол наклона. Впрочем, такое решение применяется нечасто, так как из-за монтажа и эксплуатации электропривода увеличивается цена системы в целом.

Интеграция солнечных батарей в электрическую сеть

Солнечная батарея (СБ) вырабатывает электрический ток, но для того чтобы постоянное напряжение применить в быту, его нужно трансформировать в переменный ток и пустить в сеть или аккумулировать для последующего применения.

На фото показан автомобильный инвертор, преобразующий постоянный ток (12 В) в переменный ток с параметрами бытовой электросети (50 Гц, 220 В)

Для трансформирования постоянного напряжения в переменное, применяется специальное оборудование — инвертор. На вход устройства подаётся постоянное напряжение, а на выходе получается переменный ток с требуемой частотной характеристикой и необходимой мощностью.

Важно

Аккумуляторы для бытовой солнечной электростанции — для удобства монтажа по бокам предусмотрены кронштейны для стойки

Для накопления электроэнергии применяются свинцово-кислотные аккумуляторы. Обратите внимание на то, что солнечные панели комплектуются специальными аккумуляторами, которые по рабочим параметрам и по конструкции отличаются от обычных автомобильных аккумуляторов.

Подведем итоги

Теперь вы знаете, как работают солнечные батареи и как они устроены. Интересующие подробности можно найти, посмотрев видео в этой статье. Если остались вопросы, их можно задать в комментариях.

Источник: /otoplenie-gid.ru/istochnik-nagreva/solnechnoe/817-kak-rabotaet-solnechnaya-batareya

Солнечные батареи для дома: схема оборудования, расчет стоимости комплекта

Глядя на океан энергии, льющейся с небес на землю, мы остаемся зависимыми от электросетей.

Если в городе поставка тока более-менее стабильна, то за его пределами жители регулярно становятся участниками «конца света».

Как обеспечить свой дом надежным источником электроэнергии и не лишить себя комфорта, невозможного без «направленного движения электронов»? Ответ достаточно прост в теории, но почти незнаком многим на практике.

Это солнечные батареи для частного дома они являются главным условием автономного существования.

Что представляют собой эти устройства, их виды, характеристики и эффективность применения мы рассмотрим в данной статье.

Виды солнечных батарей

Из школьного курса физики нам знаком фотоэлектрический эффект. Он возникает в полупроводниках под действием света. На этом принципе работают все солнечные батареи.

Не будем углубляться в теорию процесса, а отметим лишь самые важные практические моменты:

  • Существует три вида солнечных батарей: монокристаллические и поликристаллические и панели из аморфного кремния (гибкие).
  • Все они вырабатывают постоянный ток (напряжением 12 или 24 В).
  • Срок службы данных устройств превышает 20 лет.
  • Мощная батарея не может эффективно работать без дополнительного оборудования (контроллера, аккумулятора, инвертора).

Теперь пройдем подробно по каждому пункту. Монокристаллическая панель по сравнению с поликристаллической выдает более высокую мощность с единицы поверхности. При этом цена у нее существенно выше.

Производительность поликристаллической ячейки на 15-20% меньше, но зато при облачной погоде она снижается незначительно.

У монокристалла, напротив, при рассеянном освещении резко уменьшается выработка электричества. Солнечная батарея из аморфного кремния дешевле поликристаллической, но срок ее службы в 2-3 раза меньше.

Исходя из перечисленных фактов, выгоднее покупать поликристаллические панели.

Набор оборудования для солнечной станции

Мощная солнечная батарея для дачи – устройство не самодостаточное. Полученную энергию нужно где-то запасти, чтобы вечером и в пасмурную погоду полноценно пользоваться бытовыми электроприборами.

Поэтому емкий и живучий аккумулятор нам в любом случае потребуется. В его выборе есть один важный нюанс: не пытайтесь сэкономить, покупая стартовый автомобильный аккумулятор. Он плохо подходит для цикличного запасания энергии и не переносит глубокого разряда. Его главное предназначение – дать мощный, но кратковременный ток для пуска двигателя.

Совет

Для запасания и медленного расходования энергии нужны аккумуляторы другого типа: AGM или гелевые. Первые дешевле, но имеют небольшой срок службы (до 5 лет). Гелевые аккумуляторы дороже, но зато работают значительно дольше (8-10 лет).

Контроллер – еще один важный элемент автономной гелиостанции. Он выполняет несколько задач:

  • Отключает батарею от аккумулятора в момент полного заряда и включает ее для новой закачки электричества.
  • Выбирает оптимальный режим зарядки, повышая количество запасаемой энергии.
  • Обеспечивает максимальный срок службы аккумулятора.

Существует несколько типов контроллеров, используемых в солнечных станциях:

  • ON/OFF «включил-выключил»;
  • PWM;
  • MPPT.

Самый дешевый прибор просто отключает солнечную панель от аккумулятора при возрастании напряжения на его клеммах до максимального уровня. Это не лучший вариант, поскольку в этот момент аккумулятор еще не полностью заряжен.

Более дорогой PWM-контроллер действует «умнее». После набора максимального напряжения, он понижает его до заданного уровня и держит еще пару часов. Так достигается более полный уровень накопления энергии.

И наконец, самый интеллектуальный контроллер MPPT- типа максимально эффективно использует мощность солнечной панели на всех режимах ее работы. Это позволяет запасти в аккумуляторе дополнительно от 10 до 30 % электричества.

Независимо от вида используемых полупроводниковых материалов (поликристаллы, монокристалл, аморфный кремний) устройство солнечной батареи представляет собой цепочку последовательно соединенных ячеек-модулей.

Каждый из них генерирует небольшое напряжение (в пределах 0,5 вольт) и слабый ток (десятые доли ампера).

Работая вместе, они «сливают» накопленную энергию в общий канал и на выходе из батареи мы получаем ток большой силы и постоянного напряжения (12 или 24 Вольт).

Структурная схема оборудования солнечной станции

Обратите внимание

Стандартные бытовые электроприборы рассчитаны на 220 Вольт, поэтому работать от «постоянки» не будут. Преобразование постоянного тока в переменный выполняет отдельное устройство-инвертор. Им завершается цепочка оборудования, необходимого для солнечной батареи.

Несмотря на относительно высокую стартовую стоимость компонентов солнечной станции, ее эксплуатация получается выгодной благодаря большому ресурсу «жизни» главных элементов: фотокристаллической панели и аккумулятора.

Сколько нужно солнечных батарей для дома и дачи?

Здесь все просто. Покупателю не нужно заниматься сложным расчетом мощности солнечной станции и подбирать для нее батареи. Эту работу уже проделали специалисты компаний, выпускающих и продающих данное оборудование.

Потребителю остается лишь выбрать из предложенного ряда готовый комплект, исходя из своих потребностей. В качестве примера рассмотрим несколько стандартных вариантов, которые представлены на сайтах продавцов (актуально на 2016 год).

Гелиостанция, построенная на одной панели мощностью 250 Ватт, рассчитана на энергоснабжение потребителей, перечисленных в таблице №1.

Таблица №1 Набор потребителей для солнечной станции мощностью 250 Ватт

Ее ориентировочная цена складывается из стоимости устройств, указанных в таблице №2.

Таблица №2 Стоимость оборудования для 250-ти ваттной станции

Солнечная станция мощностью 500 Ватт способна обеспечить электричеством набор бытовых приборов, указанный в таблице №3.

Таблица №3 Энергетический потенциал гелиостанции мощностью 500 Ватт

Ее ориентировочную стоимость (с разбивкой по видам и моделям оборудования) вы найдете в таблице №4.

Гелиостанция на 1000 Ватт способна питать током не только экономные светодиодные лампочки, телевизор, ноутбук и спутниковую антенну. Одновременно с ними она «потянет» микроволновку, водяной насос или мощную электроплиту (таблица №5).

Важно

Основа данной гелиостанции — 4 солнечные панели мощностью по 250 Ватт каждая. За весь комплект оборудования (без стоимости монтажа, соединительных муфт и кабеля) нужно заплатить сумму, указанную в таблице №6

Таблица №6 Ориентировочная стоимость оборудования гелиостанции мощностью в 1 КВт

Изучая представленные комплекты оборудования, нетрудно заметить, что стоимость инвертора сравнима с ценой солнечной батареи. Поэтому некоторые владельцы солнечных станций предпочитают обходиться без инверторного преобразователя.

Они покупают для своего дома бытовые приборы, работающие от постоянного тока напряжением 12 Вольт. Помимо высокой цены инвертор при работе потребляет около 10% энергии, получаемой от солнечной батареи.

Читайте также:  Ремонт электрической плиты своими руками

Поэтому его исключение из цепочки оборудования дает неплохую экономию.

Особенности монтажа

Установка солнечных батарей – процесс технически несложный, но весьма ответственный. Площадь и вес мощных панелей достаточно большие, поэтому им требуется надежное крепление с помощью направляющих и специальных крепежных элементов. Кроме этого на крыше необходимо предусмотреть возможность легкого доступа к батареям для очистки от пыли и снега.

От величины угла, под которым солнечные лучи падают на фотоэлементы, напрямую зависит выработка энергии. Поэтому солнечные батареи не фиксируют в одном положении, а монтируют на поворотных устройствах.

Рекомендуемые углы наклона солнечных батарей

Существует два основных позиции гелиопанелей: летняя и зимняя. Меняя угол наклона, от солнечной станции получают максимальный КПД.

Характерные отзывы

Их можно разделить на две группы: отзывы тех, кто уже пользуется данными устройствами и мнения всех, кто только изучает вопрос автономного энергоснабжения.

Большинство владельцев солнечных станций довольны своим выбором. Оснастив ими свой загородный дом, они отмечают надежность, всесезонность и эффективность гелиопанелей. Размышляющие о покупке, высказывают сомнения в экономической целесообразности, опасаясь долгого срока окупаемости оборудования.

Мы выскажем свои соображения по данной теме. Принимая в расчет стабильный рост стоимости электроэнергии, получаемой из внешних сетей, использование гелиостанции нельзя назвать убыточным. Если же речь идет о районах, где энергоснабжение полностью отсутствует или характеризуется частыми отключениями, то гелиостанция — безальтернативный вариант.

Самостоятельная сборка

Попробовать свои силы в сфере солнечной энергетики домашних умельцев побуждают два фактора: стремление снизить стоимость гелиопенелей и новизна данной работы.

Экономия, получаемая при самостоятельной сборке, впечатляет. Комплект «сделай сам», состоящий из фотоячеек и монтажной токопроводящей ленты почти на 50% дешевле батареи, собранной на заводе. Купить его можно на российских торговых интернет-площадках или заказать прямую доставку из страны-производителя.

Ответов на вопрос как сделать солнечную батарею для дома своими руками во всемирной сети можно найти очень много. Кроме устного описания процесса, здесь можно найти толковые видеоролики, наглядно демонстрирующие основные его этапы.

Практические советы, которые содержатся в подобных руководствах, основаны на бесценном опыте проб и ошибок. Они помогают новичкам без серьезных финансовых потерь успешно выполнить данную работу.

Сборка солнечной батареи включает следующие этапы:

  • последовательную пайку фотоячеек в единую энергоцепочку с помощью токопроводящей ленты;
  • изготовление рамки корпуса со стеклом.

Самый ответственный момент – заливка фотоячеек прозрачным герметиком и их объединение с остекленной рамкой. Здесь существует отработанная технология, основой которой служит толстый лист поролона, предохраняющий хрупкие фотоэлементы от разрушения.

Знатоки ручной сборки рекомендуют не экономить на герметике. Если он положен слишком тонким слоем, то в батарею может проникнуть влага. Она разрушает гелиоячейки и токопроводящие дорожки.

Источник: /greensector.ru/inzhenernye-sistemy/solnechnye-batarei-dlya-doma-skhema-oborudovaniya-raschet-stoimosti-komplekta.html

Солнечные батареи для дома: принцип действия и расчет необходимого количества панелей (85 фото)

Каждый обыватель мечтает об экономии электрической энергии. В качестве её альтернативы можно рассмотреть вариант использования энергии солнца, о перевоплощении которой в электричество позаботится солнечная батарея для дома, как на фото.

Принцип действия батареи

Солнечная батарея — устройство генерации постоянного тока, располагается на крыше дома. К нему подключаются аккумуляторные батареи с датчиком контроля заряда и инверторами, преобразующими ток постоянный в переменный.

Фотоэлементы, расположенные на панельном устройстве, трансформируют энергию солнца в электричество.

Все фотоэлементы подключаются параллельным и последовательным способами в единое целое, в результате этого вырабатывается некоторое количество энергоресурса.

Параллельный способ подключения производит ток, а последовательный – напряжение.

Эффективное функционирование батареи без сбоев возможно благодаря объединению двух способов в единый механизм. Диоды используются в скреплении деталей панели, чтобы не было перегрева и разрядки аккумуляторов.

Совет

Контроллер заряда, которым оснащен аккумулятор, способен собирать и сохранять энергию от солнечной батареи. Резистор, подключенный к батарее, обеспечит возможное повреждение системы в целом.

Инвентор необходим для пропуска переменного тока из батареи, чтобы использовать его в быту. Возможно, для освещения дома. Установку солнечных батарей можно произвести своими руками или воспользоваться услугами профессионалов.

Составляющие батареи

Основными составляющими системы являются:

  • Солнечная панель, которая непосредственно принимает излучение солнца.
  • Датчик контроля заряда, стабилизирующий функциональность системы и способствующий увеличению эффективности производства электричества.
  • Аккумуляторы, благодаря которым сохраняется выработанная электроэнергия.
  • Инвертор, преобразующий ток из одного вида в другой, используемый различными электрическими приборами.

Положительные качества и недостатки

Достоинствами солнечной батареи для частного дома являются:

  • отсутствие финансовых вложений в период работы;
  • долгий срок службы;
  • использование неиссякаемого источника энергии – солнечного излучения;
  • отсутствие потребности в техобслуживании;
  • не создает шумов при работе;
  • необходимый показатель КПД;
  • экологичность в применении.

К недостаткам можно отнести:

  • зависимость от солнца.
  • внушительную стоимость системы.
  • необходимость опыта монтажной работы.

Разновидности батарей

Монокристаллические кремниевые. Происходят от процесса литья высокоочищенных кремниевых кристаллов. А нестандартное положение монокристальных атомов способно увеличить КПД до 19%.

Толщина фотоэлементов составляет 200-300 мкм. Батареи этого вида надёжны и долговечны, но стоят дорого.

Мультикристаллические кремниевые. В качестве основы для них служат разные монокристаллические кремниевые решётки. Срок их работоспособности — 25 лет, а КПД около 14-15%.

Поликристаллические кремниевые. Кремниевые атомы ориентированы иначе, поэтому уступают монокристаллу по выработке электричества. Период эксплуатации — 20 лет, КПД – 14%.

Тонкоплёночные. Для производства панельных систем используется определенная плёнка, поглощающая солнечный свет. В основном эти устройства применяют в туманных альбионах. При КПД — 10% у них достаточно привлекательная стоимость батареи.

Аморфные кремниевые. Являются экономным вариантом при КПД в 8%, но стоимость вырабатываемой электроэнергии достаточно дешевая.

Из теллуида кадмия. Производится с использованием плёночной технологии. Хотя слой пленки очень тонкий, но КПД составляет 11%. Стоимость энергии обойдется чуть дешевле, чем у кремниевых панелей.

Сфера использования

Дешёвое электричество, вырабатываемое панелями, широко востребовано в различных сферах и применяется для:

  • Освещения всевозможных зданий и помещений.
  • Энергообеспечения различных коммуникаций и оборудования больничных учреждений.
  • Освещения улиц, трасс, территорий и пр.
  • Зарядки микроэлектронных приборов и устройств.

Эффективность использования

Используя энергию солнца в доме, владелец заметно сэкономит. Тем более, при расположении дома в регионах с максимальным количеством солнечных дней. Ведь основной источник энергии – солнечное излучение.

Зимой батареи, у которых КПД около 15% смогут пользоваться горячим водоснабжением и отоплением на 70%, что значительно сэкономит расходы. 30% электроэнергии всё таки придётся позаимствовать у обычных электроносителей.

Принцип работы

Принцип работы состоит в том, что лучи солнца попадают на полупроводник, который вмонтирован в улавливатель. При обоюдном взаимодействии появляются свободные электроны, в результате чего возникает постоянный ток.

В быту потребуется применение большего количества пластин, значит, одна панель должна содержать их несколько десятков.

Система отопления при помощи солнца

Обеспечить дом теплом с помощью солнечных батарей возможно при наличии таких элементов:

  • Солнечного модуля.
  • Датчиков контроля.
  • Насосной системы.
  • Емкости (500-1000 л).
  • Электротэна.

Солнечный ресурс можно применять для напора воды в трубах или «тёплого пола».

Сделать правильный выбор нужного варианта, поможет подготовленный точный расчет мощности всех возможных потребителей и при этом учесть следующие нюансы:

  • Наклон крыши должен составлять более 30 град.
  • Панели должны располагаться на южной стороне, насыщенной солнцем.
  • Ничто не должно загораживать прямое проникновение солнца на панель.
  • Усредненное число солнечных дней.
  • Возможное облучение радиацией.
  • Надежность стропил в конструкции крыши, которые будут подвергаться нагрузке от модулей и слоя снега.

Преимущества отопления солнцем

  • экологически чистое приспособление, поэтому не загрязняет атмосферу;
  • не спровоцирует пожар;
  • работоспособны при незначительном солнце;
  • не зависит от посторонних источников энергии;
  • автоматизация системы;
  • при правильном монтаже не требуется дополнительное вложение средств или текущие ремонтные работы.

Выбор устройств для домашнего использования

Батареи малой мощности можно применять для работы некоторых бытовых приборов, телефона и нескольких источников освещения.

Универсальные используют в качестве электропитания для обеспечения светом и теплом дом на 70%.
Большой мощности – для полного обеспечения необходимых источников электричеством и теплом.

Фото солнечных батарей для дома

Источник: /landshaftportal.ru/solnechnye-batarei-dlya-doma/

Солнечные батареи для обогрева и электрификации дома

Обогрев и освещение домов альтернативной энергией – это не мечты, а реальность.

Уже сегодня мы можем полностью питать дома от собственного источника электроэнергии и использовать часть солнечного тепла для подпитки отопительных систем.

Основой подобных систем отопления и освещения является солнечная батарея, обеспечивающая трансформацию энергии. Давайте посмотрим, как можно обогреть и осветить дом с помощью солнца.

В этом обзоре мы затронем следующие вопросы:

  • Как работают солнечные батареи;
  • Чем отличаются одни виды батарей от других;
  • Как запитать дом электричеством от солнечного света;
  • Как обогреть жилище с помощью солнечной энергии.

Таким образом, мы дадим ответы на максимум вопросов.

Интерес к альтернативным источникам электроэнергии не утихает, а наоборот – растет.

Причин тому много, начиная от высоких тарифов «на свет» и заканчивая банальным отсутствием возможности подключиться к электросети.

Последняя проблема актуальна для владельцев загородных домов и дач – отсутствие электрификации делает длительное проживание невозможным. Что касается стоимости электроэнергии в России, то она постоянно растет.

Солнечная батарея – это альтернативный источник электроэнергии. И сегодня популярность таких источников растет, как растет и их эффективность.

Если первые батареи не могли похвастаться высоким КПД преобразования энергии солнца в электроэнергию, то современные образцы отличаются довольно высокой мощностью и эффективностью – например, одна солнечная панель AXITEC AC-260P/156-60S при размерах 1640х992х40 мм обладает мощностью 240 Вт.

Солнечный модуль AXITEC AC-260P/156-60S

Обратите внимание

Отдав под установку солнечных батарей довольно большую площадь, можно в полном объеме обеспечить свое домовладение практически дармовой электроэнергией.

Сегодня ими пользуются дачники, владельцы загородных домов, владельцы мобильных домов (трейлеров).

Востребованы они и там, где нужно обеспечить энергией какие-то небольшие объекты – оборудование мониторинга уровня рек, метеостанции, осветительные лампы на загородных трассах.

Давайте посмотрим, каковы преимущества от использования солнечных батарей:

  • Независимость от поставщиков электроэнергии – внезапные отключения света теперь не страшны;
  • Экологическая чистота – солнечные батареи не загрязняют окружающую среду;
  • Полная бесшумность – в отличие от дизельных, бензиновых и газовых генераторов, батареи работают без каких-либо звуков;
  • Для установки оборудования не нужны какие-либо разрешения, лицензии и прочие документы.

Есть и недостатки – некоторых из них довольно серьезные:

Эти панели нуждаются в регулярной чистке от пыли и грязи.

  • Высокая стоимость оборудования – цены на готовые комплекты составляют от 20000 рублей и выше;
  • Необходимость в регулярном обновлении аккумуляторов (отдают энергию в ночное время) – со временем они теряют свой ресурс;
  • Падение эффективности системы в зимнее время – наблюдается недостаток света для работы оборудования на полную мощность;
  • Батареи нужно регулярно очищать – на них оседает пыль, что несколько снижает их эффективность. Зимой они будут залеплены снегом;
  • В некоторых регионах использование солнечных батарей затруднено из-за малого количества солнечных дней. К тому же, некоторые панели боятся сурового российского климата.

Недостатки есть, и некоторые из них довольно серьезные. Одна солнечная панель стоит от 7-8 тыс. рублей и выше, а для того чтобы выработать достаточное количество электроэнергии, понадобятся несколько таких батарей. Сюда же следует включить затраты на покупку аккумуляторов и преобразователей.

Стоимость солнечных батарей в комплектах для дома может достигать 500 тыс. рублей и даже выше – это довольно мощные электростанции, которые могут отдавать в нагрузку до 5 кВт электрической энергии.

Принцип работы солнечных батарей очень прост – они преобразуют солнечную энергию в электрическую за счет применяемых в их конструкции преобразователей. Максимальный показатель эффективности преобразования составляет около 40% (в идеальных условиях).

На практике эффективность падает из-за постепенного старения фотоэлементов, снижения прозрачности стекол и оседающей на панелях грязи. Для достижения максимальной энергоэффективности они монтируются на южных скатах крыш (угол около 40-45 градусов).

В минимальный комплект входят: сама панель, АКБ, инвертор и контроллер.

Солнечная панель дает нам постоянный ток – 12 или 24 В. Этого достаточно для работы многих бытовых приборов, вроде радиоприемников, настенных электронных часов и прочего оборудования.

Но в большинстве случаев техника нуждается в электросети с напряжением 220 В.

Следовательно, нужно как-то преобразовать постоянный ток напряжением 12-24 В в переменный ток напряжением 220 В – для этого потребуется дополнительное оборудование.

Для преобразования электроэнергии применяются инверторные преобразователи, отличающиеся высоким КПД. Но есть еще одна проблема – ночью батареи не работают, поэтому нам потребуются еще и аккумуляторы. К ним прибавляем зарядные устройства (или приобретаем автоматические преобразователи/контроллеры, которые самостоятельно выбирают источники питания и заряжают аккумуляторы).

Читайте также:  Кухонные весы с подсчетом калорий

Далее необходимо определиться с видом панелей. Солнечные батареи для дома представлены следующими разновидностями:

  • Пленочные (гибкие) – характеризуются легкостью монтажа и небольшим весом, но не могут похвастаться высокой эффективностью;
  • Монокристаллические – для их работы необходимо яркое солнце, в облачную погоду их эффективность падает практически до нуля;
  • Поликристаллические – самые современные солнечные батареи, которые могут работать в облачную погоду.

Гибкие солнечные панели не самый лучший вариант для постоянного использования.

Гибкие солнечные панели не подходят для длительного применения. Поэтому мы рекомендуем обратить свое внимание на последнюю категорию батарей – они представлены самым широким ассортиментом.

Далее нам нужно определиться с мощностью оборудования. Если солнечные батареи будут использоваться только для осветительных целей, можно обойтись панелями небольшой площади и малой мощности.

Если к местной сети будут подключаться мощные потребители – пылесосы, микроволновые печи, чайники и многое другое – придется приобрести большое количество батарей, мощные преобразователи и аккумуляторы с высокой суммарной емкостью.

Важно

Некоторые люди приобретают в свои загородные дома низковольтное оборудование – это лампы на 12 или 24 В, а также аналогичная бытовая техника (мониторы, телевизоры, мультимедийные плееры и многое другое). Что касается микроволновых печей и электрочайников, то они заменяются обычной газовой печкой с баллоном.

Затраты будут довольно высокими – стоимость солнечной батареи на 300 Вт составляет около 23 тыс. рублей (есть и дешевле), за инвертор (отечественный) нужно отдать от 4500 рублей. В дополнение к этому нужно приобрести аккумулятор и контроллер заряда.

Комплект такой мощности, из самых недорогих комплектующих, обойдется примерно в 27 тыс. рублей – к нему можно будет подключать маломощных потребителей (лампы, мелкая бытовая техника и многое другое).


Маломощные комплекты с солнечными батареями нередко используются и в электрифицированных зданиях – для подпитки энергозависимых отопительных котлов в периоды отключения электроэнергии. Приобрести все это электрохозяйство можно в специализированных магазинах и в интернет-магазинах.

Типичным тому примером является онлайн-магазин «Солнечная корона» — в нем можно приобрести солнечные аккумуляторы, аккумуляторы, инверторы, зарядные устройства, контроллеры и низковольтную технику.

В продаже представлены даже низковольтные холодильники вполне приличного объема. Минус у них один – стоят они в 4-5 дороже своих аналогов с питанием от сети 220 В.

Принцип действия гелиосистемы отопления дома.

Мы уже разобрались, как выбрать и купить солнечные батареи на дом, поговорили об их принципе действия, достоинствах и недостатках.

Теперь следует поговорить о солнечных панелях, используемых для обогрева домовладений – они отличаются по своей конструкции. Принцип их работы заключается в преобразовании энергии солнца в тепло.

Такие батареи правильнее называть солнечными коллекторами (гелиосистемами).

Солнечное отопление наиболее выгодно в регионах с максимальным количеством солнечных дней. Здесь батареи смогут переработать максимум энергии, представленной световым и инфракрасным излучением.

Затраты на приобретение и установку оборудования окупаются за несколько лет (от 2 до 5) при общем сроке службы до 30 лет.

Следует отметить, что данные системы отопления не могут работать самостоятельно, поэтому их используют совместно с другими источниками тепла – это отопительные котлы, электронагреватели.

Совет

Многие современные отопительные котлы оснащаются автоматикой для работы с солнечными коллекторами, обеспечивая экономичный обогрев помещений.

Давайте рассмотрим основные достоинства солнечных батарей (гелиосистем):

  • Существенная экономия на коммунальных услугах или топливе для работы отопительного оборудования;
  • Снижение затрат на горячую воду – максимальная экономия проявляется в летний период;
  • Возможность обогрева зданий любого назначения – от жилых построек до предприятий;
  • Отсутствие влияния на окружающую среду – какие-либо выбросы здесь отсутствуют;
  • Возможность работы с отопительными котлами любого типа.

Есть и недостатки:

Для регионов с обильными снегопадами лучше использовать плоские солнечные батареи с режимом оттайки.

  • Отопление с помощью солнечных батарей не может полностью заменить другие источники тепла – оно является вспомогательным;
  • Высокая стоимость оборудования – прежде чем покупать технику, нужно провести расчеты целесообразности ее применения;
  • Низкая эффективность в сильные морозы и в пасмурную погоду – мощный многодневный снегопад станет серьезным препятствием для работы отопления;
  • Коллекторы, как и электрические солнечные батареи, нуждаются в периодической чистке – от пыли и снега.

Недостатки серьезные, как и в случае с электрическими солнечными батареями – и ничего нут не поделаешь.

Солнечные коллекторы подразделяются на две основные категории. К первой категории относятся плоские солнечные батареи. Они обладают простой конструкцией – по трубам протекает теплоноситель, поступающий в отопительную систему и в систему подачи горячей воды. Такие установки характеризуются низкой эффективностью, а их главными достоинствами являются простота и дешевизна.

Данные гелиоустановки выгодно использовать для подготовки горячей воды с ее накоплением в отдельном баке.

Ко второй категории солнечных батарей относятся вакуумные трубчатые коллекторы. Здесь за забор тепла от нашего естественного светила отвечают стеклянные трубки, из которых откачан воздух. Процессы преобразования протекают двумя способами:

Устройство вакумного трубчатого коллектора с медной трубкой внутри.

  • Прямым – внутри стеклянных трубок проходят трубки с теплоносителем, который поступает в отопительную систему или в контур ГВС. Для такого способа характерна высокая эффективность, но вся конструкция получается неразборной. Сломается один элемент – придется менять весь модуль;
  • Двойным – здесь в каждой стеклянной вакуумной трубке располагается медная трубка, в которую закачана жидкость с низкой температурой кипения. Нагреваясь, она испаряется, поднимается вверх и отдает тепло в массивный наконечник – далее тепло передается в гребенчатый медный коллектор (манифолд). Эффективность таких солнечных батарей чуть ниже, но у них есть один плюс – каждый элемент здесь является съемным, если одна из трубок лопнет, ее можно будет заменить (как батарейки).

Солнечные батареи согревают теплоноситель, который поступает во внешний теплообменник. Оттуда тепло отправляется в накопительный бак большого объема (буферный накопитель).

Так как солнечные батареи у нас выступают в роли вспомогательного тепла, к теплообменнику подключается отопительный котел. Батареи отопления подключаются к буферному накопителю, для движения теплоносителя задействуется циркуляционный насос.

Тепло для контура ГВС забирается через еще один теплообменник, располагающийся в буферном накопителе.

Обратите внимание

Схем подключения много, какую из них выбрать – зависит от конкретных условий эксплуатации. Вы можете воспользоваться готовыми схемами или привлечь силы специалистов.

Кроме того, для управления системой могут задействоваться отопительные котлы.

В отопительный период, за счет солнечного тепла, экономия на энергоносителях (газ, сжиженный газ, электроэнергия, дрова) может достигать 25-30%, а то и выше – в зависимости от уличной температуры.

В летнее время экономия на горячей воде достигает 100%, так как вода прогревается до +50-60 градусов – она настолько горячая, что придется разбавлять ее холодной.

Источник: /remont-system.ru/alternativnaya-energiya/solnechnye-batarei-dlya-obogreva-i-elektrifikacii-doma

Солнечная батарея: устройство и принцип работы

Совсем недавно, когда мы ещё ходили в школу, солнечная батарея для выработки электричества казалась чем-то фантастическим. Нам казалось, что их можно использовать только на космических кораблях.

Но прошло 20─25 лет и солнечные батарейки не только появились в часах и калькуляторах, но и уже способны обеспечивать электроэнергией частные дома и дачи. А современные солнечные электростанции могут обеспечивать электроэнергией небольшие городки.

Широкое распространение солнечные батареи получили европейских странах, США, Израиле и других регионах с высокой солнечной инсоляцией. И их использование уже даёт существенную экономию электроэнергии и горячего водоснабжения.

 

Что потребуется для преобразования солнечной энергии?

Солнечная энергия может быть преобразована в тепловую и электрическую. Самые первые шаги в использовании энергии солнца человек сделал именно в направлении получения тепла. Можно сказать, что в этом случае и преобразования нет. Принцип работы прост. Он заключается в сборе солнечного тепла.

Поэтому и устройства для этого называются солнечные коллекторы. Принцип работы таких установок заключается в сборе тепла с помощью абсорбера и передачи его теплоносителю. В качестве последнего выступает вода или воздух. Такие установки часто используются для отопления и горячего водоснабжения частных домов.

Второй вариант использования солнечной энергии – это преобразование её в электричество.

Фотоэлектрический элемент

Растения на нашей планете уже миллионы лет преобразуют солнечную энергию химических связей. В результате этого процесса, называемого фотосинтезом, получается глюкоза. Принцип работы фотосинтеза человеку известен уже давно. Подробнее о том, как организмы используют солнечную энергию, читайте по указанной ссылке.

В этом материале речь у нас пойдёт о получении электричества с помощью солнечных батарей. Для этого используются фотоэлектрические элементы.

Это полупроводники на основе кремния, которые вырабатывают постоянный электрический ток под действием света. В качестве материала для фотоэлементов используются соединения кремния с кадмием, медью, индием.

Кроме того, они могут отличаться технологией изготовления.

  • Монокристаллические;
  • Поликристаллические;
  • Аморфные.

Фотоэлектрические панели из монокристаллов кремния считаются наиболее эффективными и имеющими высокий КПД. Фотоэлементы из поликристаллического кремния стоят дешевле и имеют самую низкую стоимость получения ватта электроэнергии. Есть также фотоэлектрические элементы на базе аморфного кремния. Из них делают гибкие солнечные панели.

Выпускаются они из аморфного кремния. Производство таких элементов проще, чем моно и поликристаллов. В результате цена ниже, но КПД оставляют желать лучшего (5─6%). Кроме того, панели из аморфного кремния имеют меньший срок службы, чем предыдущие два типа.

Чтобы увеличить эффективность работы элементов, в кремний добавляют медь, селена, галлий, индий.

Фотоэлементы в солнечной батарее

Фотоэлектрические элементы объединяются в солнечную батарею. Как правило, число фотоэлементов в батарее кратно 36, но есть и другие варианты. Помимо солнечной батареи в состав гелиосистем входят и другие устройства для того, чтобы накапливать и распределять электроэнергию. В частности, это:

  • Аккумулятор (один или несколько);
  • Инвертор (преобразует напряжение из 12 или 24 в 220 вольт);
  • Контроллер для управления зарядом-разрядом аккумулятора и подачи питания в сеть.

По назначению можно выделить две большие группы устройств. Солнечные батареи малой мощности (до десяти ватт) применяются в мобильных гаджетах или power bank для зарядки. Системы больше мощности используются для электрификации частных домов и дач.

Они обычно располагаются на крышах и фасадах домов, реже на участках рядом с домом. Есть устройства, которые позволяют отслеживать солнце и менять угол наклона в зависимости от его положения.

Теперь посмотрим, как работает солнечная батарея и от чего зависит эффективность её работы.

Принцип работы солнечной батареи

Вернуться к содержанию
 

Как работает солнечная батарея?

Солнечная энергия преобразуется в последовательно подключённых фотоэлементах. Рассмотрим принцип работы солнечной батареи на уровне фотоэлектрических элементов. Основой фотоэлемента является кристалл кремния. Соединения кремния очень распространены в природе.

Самый известный – это оксид кремния или песок. Кристалл кремния можно упрощенно назвать большой песчинкой. Кристаллы выращиваются искусственно в лабораторных условиях. Обычно их получают кубической формы, а затем на пластины. Толщина этих пластин всего 200 микрон.

Это в 3─4 раза толще волоса человека.

Принцип работы фотоэлемента

На полученные пластины кремния нанесён с одной стороны слой бора, а с другой ─ фосфора. В местах контакта кремниевой пластины с бором имеется избыток электронов. На другой стороне по границе кремниевой пластины с фосфором недостаёт электронов. Там образуются «дырки», как их принято называть. Такую стыковку границ с избыточным количеством электроном и их недостатком называют p-n переходом.

Важно

При попадании солнечного света на фотоэлементы батареи их поверхность бомбардируется фотонами. Они выбивают избыточные электроны на границе с фосфором, и они начинают движение к «дыркам» на границе с бором.

Таким образом, возникает электрический ток, являющийся упорядоченным движением электронов. К фотоэлементу подводятся металлические дорожки, через которые и собирается ток.

В этом и выражается принцип работы кремниевого фотоэлемента.

Мощность одного фотоэлектрического элемента маленькая, а напряжение составляет около 0,5 вольта. Поэтому их последовательно объединяют в батареи по 36 штук, чтобы получить на выходе 18 вольт. Это хватит для того, чтобы зарядить аккумулятор 12 вольт.

Здесь ещё нужно учесть, что заявленное напряжение и мощность будут только при работе батареи с максимальной отдачей, что в реальных условиях редкость. Собранная батарея помещается подложку, закрывается стеклом и герметизируется. Используемое стекло должно пропускать ультрафиолет, поскольку солнечная батарея также преобразует и эту часть спектра.

Собранные батареи могут объединяться друг с другом в последовательные и параллельные цепочки. Получается небольшая солнечная электростанция.

Читайте также:  Клеммная колодка

Сегодня солнечные батареи устанавливаются в своих домах и на дачах для экономии электроэнергии. Такие миниатюрные гелиосистемы работают круглый год. Главное, чтобы поверхность панелей была чистой и светило солнце. В ряде случаев их эффективность выше в морозный солнечный день, чем в летний. Это объясняется тем, что разогрев солнечных модулей несколько снижает эффективность их работы.

Гелиосистема: солнечные батареи и коллекторы

Сразу стоит отметить, что полностью отказаться от электричества из централизованных сетей не получиться. Но, установив солнечную батарею, удастся значительно экономить на коммунальных расходах. Вариант, конечно, не годиться для квартиры. Нормально эксплуатировать такую систему получиться только в загородном доме или на даче, где достаточно места для установки солнечных панелей.

В центральных регионах России гелиосистема окупается примерно за 5 лет. В южных регионах срок окупаемости значительно сокращается. Часто вместе с солнечными батареями устанавливаются коллекторы для отопления дома. Сейчас есть фабричные солнечные коллекторы, которые могут подогревать воду круглый год.

Что касается установки солнечных батарей, то здесь следует отметить следующие моменты:

  • Устанавливать панели нужно на южной стороне крыши, фасада или на участке стороной на юг;
  • Угол наклона соответствует значению широты вашего региона;
  • Рядом не должно быть объектов, отбрасывающих тень на солнечные батареи;
  • Поверхность панелей нужно регулярно очищать от грязи и пыли;
  • Желательно использовать системы с отслеживанием положения солнца.

Теперь вам ясен принцип работы солнечных батарей и их возможности. Понятно, что не следует отказываться от централизованного снабжения электроэнергией. Современные гелиосистемы пока не в состоянии полноценно обеспечивать дом энергией в пасмурную погоду.

Но как часть комбинированной системы энергоснабжения дома они очень уместны.
Если статья оказалась для вас полезной, распространите ссылку на неё в социальных сетях. Этим вы поможете развитию сайта.

Голосуйте в опросе ниже и оценивайте материал! Исправления и дополнения к статье оставляйте в комментариях.

Вернуться к содержанию

Источник: /akbinfo.ru/alternativa/princip-raboty-solnechnoj-batarei.html

Расчёт солнечных батарей

Приветствую вас на сайте е-ветерок.ру, сегодня я хочу вам рассказывать о том сколько нужно солнечных батарей для дома или дачи, частного дома и пр. В этой статье не будет формул и сложных вычислений, я попробую донести всё простыми словами, понятными для любого человека.

Статья обещает быть не маленькой, но я думаю вы не зря потратите своё время, оставляйте комментарии под статьёй.

Совет

Самое главное чтобы определится с количеством солнечных батарей надо понимать на что они способны, сколько энергии может дать одна солнечная панель, чтобы определить нужное количество.

А также нужно понимать что кроме самих панелей понадобятся аккумуляторы, контроллер заряда, и преобразователь напряжения (инвертор).

Расчёт мощности солнечных батарей

Чтобы рассчитать необходимую мощность солнечных батарей нужно знать сколько энергии вы потребляете. Например если ваше потребление энергии составляет 100кВт*ч в месяц (показания можно посмотреть по счётчику электроэнергии), то соответственно вам нужно чтобы солнечные панели вырабатывали такое количество энергии.

Сами солнечные батареи вырабатывают солнечную энергию только в светлое время суток. И выдают свою паспортную мощность только при наличие чистого неба и падении солнечных лучей под прямым углом. При падении солнца под углами мощность и выработка электроэнергии заметно падает, и чем острее угол падения солнечных лучей тем падение мощности больше.

В пасмурную погоду мощность солнечных батарей падает в 15-20 раз, даже при лёгких облачках и дымке мощность солнечных батарей падает в 2-3 раза, и это всё надо учитывать. При расчёте лучше брать рабочее время, при котором солнечные батареи работают почти на всю мощность, равным 7 часов, это с 9 утра до 4 часов вечера.

Панели конечно летом будут работать от рассвета до заката, но утром и вечером выработка будет совсем небольшая, по объёму всего 20-30% от общей дневной выработки, а 70% энергии будет вырабатываться в интервале с 9 до 16 часов.

Таким образом массив панелей мощностью 1кВт (1000ватт) за летний солнечный день выдаст за период с 9-ти до 16-ти часов 7 кВт*ч электроэнергии, и 210кВт*ч в месяц. Плюс ещё 3кВт (30%) за утро и вечер, но пускай это будет запасом так-как возможна переменная облачность.

И панели у нас установлены стационарно, и угол падения солнечных лучей изменяется, от этого естественно панели не будут выдавать свою мощность на 100%. Я думаю понятно что если массив панелей будет на 2кВт, то выработка энергии будет 420кВт*ч в месяц.

А если будет одна панелька на 100 ватт, то в день она будет давать всего 700 ватт*ч энергии, а в месяц 21кВт.

Неплохо иметь 210кВт*ч в месяц с массива мощностью всего 1кВт, но здесь не всё так просто

Во-первых не бывает такого что все 30 дней в месяце солнечные, поэтому надо посмотреть архив погоды по региону и узнать сколько примерно пасмурных дней по месяцам.

В итоге наверно 5-6 дней точно будут пасмурные, когда солнечные панели и половины электроэнергии не будут вырабатывать.

Значит можно смело вычеркнуть 4 дня, и получится уже не 210кВт*ч, а 186кВт*ч

Так-же нужно понимать что весной и осенью световой день короче и облачных дней значительно больше, поэтому если вы хотите пользоваться солнечной энергией с марта по октябрь, то нужно увеличить массив солнечных батарей на 30-50% в зависимости от конкретного региона.

Но это ещё не всё, также есть серьёзные потери в аккумуляторах, и в преобразователей (инверторе), которые тоже надо учитывать, об этом далее.

Про зиму я пока говорить не буду так-как это время совсем плачевное по выработке электроэнергии, и тут когда неделями нет солнца, уже никакой массив солнечных батарей не поможет, и нужно будет или питаться от сети в такие периоды, или ставить бензогенератор. Хорошо помогает также установка ветрогенератора, зимой он становится основным источником выработки электроэнергии, но если конечно в вашем регионе ветренные зимы, и ветрогенератор достаточной мощности.

Расчёт ёмкости аккумуляторной батареи для солнечных панелей

Примерно так выглядит солнечная электростанция внутри дома Ещё один пример установленных аккумуляторов и универсального контроллера для солнечных батарей

Самый минимальный запас ёмкости аккумуляторов, который просто необходим должен быть такой чтобы пережить тёмное время суток.

Например если у вас с вечера и до утра потребляется 3кВт*ч энергии, то в аккумуляторах должен быть такой запас энергии.

Если аккумулятор 12 вольт 200 Ач, то энергии в нём поместиться 12*200=2400 ватт (2,4кВт). Но аккумуляторы нельзя разряжать на 100%. Специализированные АКБ можно разряжать максимум до 70%, если больше то они быстро деградируют.

Если вы устанавливаете обычные автомобильные АКБ, то их можно разряжать максимум на 50%. По-этому, нужно ставить аккумуляторов в два раза больше чем требуется, иначе их придётся менять каждый год или даже раньше.

Оптимальный запас еъёмкости АКБ это суточный запас энергии в аккумуляторах.

Обратите внимание

Например если у вас суточное потребление 10кВт*ч, то рабочая ёмкость АКБ должна быть именно такой. Тогда вы без проблем сможете переживать 1-2 пасмурных дня, без перебоев. При этом в обычные дни в течение суток аккумуляторы будут разряжаться всего на 20-30%, и это продлит их недолгую жизнь.

Ещё одна немаловажная делать это КПД свинцово-кислотных аккумуляторов, который равен примерно 80%. То-есть аккумулятор при полном заряде берёт на 20% больше энергии чем потом сможет отдать. КПД зависит от тока заряда и разряда, и чем больше токи заряда и разряда тем ниже КПД.

Например если у вас аккумулятор на 200Ач, и вы через инвертор подключаете электрический чайник на 2кВт, то напряжение на АКБ резко упадёт, так-как ток разряда АКБ будет около 250Ампер, и КПД отдачи энергии упадёт до 40-50%. Также если заряжать АКБ большим током, то КПД будет резко снижаться.

Также инвертор (преобразователь энергии 12/24/48 в 220в) имеет КПД 70-80%.

Учитывая потери полученной от солнечных батарей энергии в аккумуляторах, и на преобразовании постоянного напряжения в переменное 220в, общие потери составят порядка 40%.

Это значит что запас ёмкости аккумуляторов нужно увеличивать на 40%, и так-же увеличивать массив солнечных батарей на 40%, чтобы компенсировать эти потери.

Но и это ещё не все потери. Существует два типа контроллеров заряда аккумуляторов от солнечных батарей, и без них не обойтись.

PWM(ШИМ) контроллеры более простые и дешёвые, они не могут трансформировать энергию, и потому солнечные панели не могут отдать а АКБ всю свою мощность, максимум 80% от паспортной мощности. А вот MPPT контроллеры отслеживают точку максимальной мощности и преобразуют энергию снижая напряжение и увеличивая ток зарядки, в итоге увеличивают отдачу солнечных батарей до 99%. Поэтому если вы ставите более дешёвый PWM контроллер, то увеличивайте массив солнечных батарей ещё на 20%.

Расчёт солнечных батарей для частного дома или дачи

Если вы не знаете ваше потребление и только планируете скажем запитать дачу от солнечных батарей, то потребление считается достаточно просто. Например у вас на даче будет работать холодильник, который по паспорту потребляет 370кВт*ч в год, значит в месяц он будет потреблять всего 30.8кВт *ч энергии, а в день 1.02кВт*ч.

Также свет, например лампочки у вас энергосберегающие скажем по 12 ватт каждая, их 5 штук и светят они в среднем по 5 часов в сутки. Это значит что в сутки ваш свет будет потреблять 12*5*5=300 ватт*ч энергии, а за месяц «нагорит» 9кВт*ч.

Также можно почитать потребление насоса, телевизора и всего другого что у вас есть, сложить всё и получится ваше суточное потребление энергии, а там умножить на месяц и получится некая примерная цифра. Например у вас получилось в месяц 70кВт*ч энергии, прибавляем 40% энергии, которая будет теряться в АКБ, инверторе и пр.

Значит нам нужно чтобы солнечные панели вырабатывали примерно 100кВт*ч. Это значит 100:30:7=0,476кВт. Получается нужен массив батарей мощностью 0,5кВт. Но такого массива батарей будет хватать только летом, даже весной и осенью при пасмурных днях будут перебои с электричеством, поэтому надо увеличивать массив батарей в два раза.

В итоге вышеизложенного в вкратце расчёт количества солнечных батарей выглядит так:

  • принять что солнечные батареи летом работают всего 7 часов с почти максимальной мощностью
  • посчитать своё потребление электроэнергии в сутки
  • Разделить на 7 и получится нужная мощность массива солнечных батарей
  • прибавить 40% на потери в АКБ и инверторе
  • прибавить ещё 20% если у вас будет PWM контроллер, если MPPT то не нужно
  • Пример: Потребление частного дом 300кВт*ч в месяц, разделим на 30 дней = 7кВт, разделим 10кВт на 7 часов, получится 1,42кВт. Прибавим к этой цифре 40% потерь на АКБ и в инверторе, 1,42+0,568=1988ватт. В итоге для питания частного дома в летнее время нужен массив в 2кВт. Но чтобы даже весной и осенью получать достаточно энергии лучше увеличить массив на 50%, то-есть ещё плюс 1кВт. А зимой в продолжительные пасмурные периоды использовать или бензогенератор, или установить ветрогенератор мощностью не менее 2кВт. Более конкретно можно рассчитать основываясь на данных архива погоды по региону.

    Стоимость солнечных батарей и аккумуляторов

    Цены на солнечные батареи и оборудование сейчас достаточно разнятся, одна и также продукция может по цене в разы отличаться у разных продавцов, поэтому ищите дешевле, и у проверенных временем продавцов. Цены на солнечные батареи сейчас в среднем 70 рублей за ватт, то-есть массив батарей в 1кВт обойдётся примерно в 70т.руб, но чем больше партия тем больше скидки и дешевле доставка.

    Качественные специализированные аккумуляторы стоят дорого, аккумулятор 12в 200Ач обойдётся в среднем в 15-20т.рублей. Я использую вот такие акб, про них написано в этой статье Аккумуляторы для солнечных батарей Автомобильные в два раза дешевле, но их надо ставить в два раза больше чтобы они прослужили хотябы лет пять. А так-же автомобильные АКБ нельзя ставить в жилых помещениях так-как они не герметичны. Специализированные при разряде не блолее 50% прослужат 6-10 лет, и они герметичные, ничего не выделяют. Можно купить и дешевле если брать крупную партию, обычно продавцы дают приличные скидки.

    Остальное оборудование наверно индивидуально, инверторы бывают разные, и по мощности, и по форме синусоиды, и по цене. Так-же и контроллеры заряда могут быть как дорогие со всеми функциями, в том числе с о связью с ПК и удалённым доступом через интернет.

    Источник: /e-veterok.ru/095-solnehnye-batarei-vraschyot.php

    Ссылка на основную публикацию