Датчики температуры. Виды и работа. Как выбрать и применение
Датчики температуры нужны для того, чтобы проконтролировать температуру в помещении, жидкости, твердого объекта или расплавленного металла.
Основой действия температурных датчиков в автоматизированном управлении является изменение температуры в электрический сигнал.
Это обуславливает преимущества электрических измерений: результаты легко передавать по сети, скорость передачи может быть достаточно высокой. Величины могут преобразовываться друг в друга и обратно.
Цифровой код создает повышенную точность замера, скорость и чувствительность.
Виды и принцип действия
Термопары
Термопара представляет собой две проволоки из разных металлов, спаянных между собой. При разности температур между горячим и холодным концом в цепи возникает электрический ток.
Величина этого электрического тока зависит от термоэлектрической силы термопары, составляет от 40 до 60 мкВ, в зависимости от материала термопары. Материал термопары может быть разным.
Это могут быть никель-хромовые, хромо-алюминиевые, железо-никелевые, железо-константановые и т.д.
Термопара является высокоточным датчиком температуры, однако эту точность достаточно проблематично снять. Термопара является относительным датчиком температуры, уровень ее напряжения имеет зависимость от температурной разности между спаями. При этом холодный спай находится при комнатной температуре или при какой-либо другой.
Рассмотрим работу термопары ближе. Есть две термопары и две температуры горячего и холодного конца. Соответственно ЭДС зависит от разности температур. Температуру холодного спая необходимо компенсировать. Аппаратным способом компенсации является использование второй термопары, которая помещена в заранее известную температуру.
Программным способом компенсации является использование другого датчика температуры, на этот раз абсолютного, который помещается в изотермическую камеру вместе с холодными спаями и контролирует их температуру с заданной точностью. Имеются трудности снятия данных с термопары.
Во-первых, она нелинейная. В ГОСТе заботливо введены коэффициенты полинома для перевода ЭДС в температуру и обратно. Эти полиномы большого порядка, но ничто не запрещает спокойно их посчитать силами контроллера.
Во-вторых, другая проблема заключается в том, что термо-ЭДС термопары измеряется в единицах и сотнях микровольт. Соответственно, использование широко доступных аналогоцифровых преобразователей приведет к полному провалу. Нужны прецизионные многоразрядные малошумящие аналогоцифровые преобразователи для того, чтобы использовать термопару в своих конструкциях.
Терморезисторы
Гораздо более простым способом измерения стало применение терморезисторов. Они работают на зависимости сопротивления материалов от внешней температуры. Металлические термометры сопротивления, в частности платиновые обладают очень высокой точностью и линейностью. Термометры сопротивления определяются двумя основными характеристиками.
Это базовое сопротивление термометра при определенной температуре. В ГОСТе базовым сопротивлением считается сопротивление при 0 градусах по Цельсию.
ГОСТ рекомендует использование нескольких номиналов сопротивлений в Омах и температурный коэффициент, который определяется как разность сопротивлений нашей температуры и при 0 градусов, деленной на нашу температуру и t нуля градусов, умноженную на единицу, деленную на базовое сопротивление.
Ткс = (Re – R0c) / (Te – T0c) *1/R0c
В ГОСТе на терморезисторы вы найдете температурный коэффициент для различных термометров из платины, меди и никеля. Кроме того, там присутствуют коэффициенты полинома для расчета температуры из текущего сопротивления резистора.
Одной из проблем термометров сопротивления является очень низкий температурный коэффициент сопротивления. Однако, измерять сопротивление с высокой точностью гораздо проще, чем очень малые значения напряжения в отличие от термопар.
Одним из способов измерения сопротивления является включение нашего термосопротивления в цепь источника тока и измерение дифференциального напряжения.
Использование полупроводников даст нам температурный коэффициент доли единицы процента, их гораздо проще измерять с помощью аналогоцифровых преобразователей. Есть интегральные микросхемы датчиков температуры, аналоговый выход которых уже соответствует питаемому напряжению.
Такие датчики температуры можно напрямую подключать к аналогоцифровому преобразователю и спокойно оцифровывать его с помощью восьми- или десятибитного АЦП.
Комбинированный датчик
Помимо интегральных схем с выходом, существуют датчики с цифровым интерфейсом. Одним из популярных датчиков является комбинированный датчик температуры и влажности серии SHT1.
Этот датчик позволяет измерять температуру с точностью + 2 градуса и влажность с точностью + 5 градусов. Главной проблемой данного датчика температуры является то, что там решили оптимизировать интерфейс.
Он позволяет подключать параллельные устройства.
Цифровой датчик
Цифровой датчик температуры DS18B20, который представляет собой трехвыводную микросхему, позволяет с высокой точностью до 0,5 градуса получать температуру с множеством параллельно работающих датчиков.
В этом датчике широкий интервал температур от -55 до +125 градусов. Основной его недостаток – медлительность. Вычисления с максимальной точностью он делает за 750 мс.
Ввиду инерционности корпуса датчика температуры опрашивать его нет никакого смысла.
Бесконтактные датчики (пирометры)
В этом датчике имеется специальная тонкая пленка, поглощающая инфракрасные излучения, тем самым нагревающаяся. Такие бесконтактные термосенсоры используются в тепловизорах. Там имеется не один тепловой датчик, а матрица. Они позволяют на расстоянии до 3 метров детектировать тепловой объект.
Кварцевые преобразователи температуры
Для того, чтобы измерить температуру в интервале -80 +250 градусов применяют кварцевые преобразователи. Они работают на частотной зависимости кварца от температуры. Действие датчиков происходит на частотной зависимости. Функция преобразователя меняется от расположения среза по осям кристалла.
Кварцевые датчики работают с высокой чувствительностью, разрешением, стабильностью. Эти свойства делают их перспективными в использовании. Они получили большое распространение в цифровых термометрах.
Шумовые датчики температуры
Работа шумовых датчиков заключается на зависимости шумовой разности потенциалов на резисторе от температуры.
Практически реализовать способ измерения температуры шумовыми датчиками можно, сделав сравнение шумов 2-х одинаковых резисторов, один находится при определенной температуре, 2-й при измеряемой температуре.
Шумовые датчики температуры применяются для температурного интервала -270 -1100 градусов.
Преимуществом шумовых датчиков стала возможность измерения температуры в термодинамике на вышеописанной закономерности. Но это осложнено трудным измерением напряжения шума, так как оно мало и сравнимо с шумом усилителя.
Датчики температуры ЯКР (ядерного квадрупольного резонанса)
Термометры ЯКР работают за счет действия градиента поля тока решетки кристалла и момента ядра, которое вызвано отклонением заряда от симметрии сферы. Это создает процессию ядер. Частота имеет зависимость от градиента поля решетки. Для разных веществ имеет величину до тысяч МГц. Градиент зависит от температуры, с ее возрастанием частота ЯКР уменьшается.
Датчики температуры ЯКР образуют ампулу с веществом, помещенную в обмотку индуктивности, которая соединена с контуром генератора. Когда частота генератора совпадает с частотой ЯКР, то энергия генератора поглощается.
Допуск замера температуры -263 градуса равен + 0,02 градуса, а температуры 27 градусов +0,002 градуса.
Преимуществом термометров ЯКР становится стабильность, неограниченная по времени, недостатком является значительная нелинейность преобразующей функции.
Объемные преобразователи
Объемные датчики действуют на расширении и сжатии веществ при изменении температуры. Диапазон действия преобразователей определяется, насколько стабильны свойства материалов.
Датчиками делают измерения температуры в интервале -60 -400 градусов. Допуск измерения составляет от 1 до 5%. Интервал работы датчика с жидкостью может зависеть от температуры закипания и замерзания.
Погрешности измерения датчиков на жидкости от 1 до 3%, определяются температурой среды.
Нижняя граница измерения преобразователей на газе определяется температурой перехода газа в жидкое состояние, верхняя граница – стойкостью баллона к воздействию температуры.
Параметры выбора датчика температуры
- Диапазон рабочей температуры.
- Возможность погружения датчика в объект измерения или среду. Если это невозможно, то лучше выбрать пирометр или термометр.
- Условия проведения замеров. Если нужно измерять в агрессивной среде, то надо выбирать датчик в коррозионностойком корпусе, или бесконтактного типа. Также следует определить наличие давления, влажности и т.д.
- Время работы датчика до калибровки или замены. Многие датчики не могут долго и стабильно работать (термисторы).
- Величина сигнала выхода. Существуют датчики температуры, выдающие сигнал по току, или в градусах.
- Технические данные: погрешность, разрешение, напряжение, время сработки. Для полупроводников важен тип корпуса.
Похожие темы:
Источник: /electrosam.ru/glavnaja/jelektrooborudovanie/ustrojstva/datchiki-temperatury/
Датчики измерения температуры: типы, принцип работы
Практически в любой современной аппаратуре есть датчики температуры.
Это устройство, которое позволяет измерить температуру объекта или вещества, используя при этом различные свойства и характеристики измеряемых тел или среды.
Не смотря на то, что все термодатчики призваны измерять температуру, разные типы датчиков делают это абсолютно по-разному. Давайте подробнее разберем принцип работы и характеристики основных видов термодатчиков.
Классификация термодатчиков по принципу работы
По принципу измерения все датчики измерения температуры подразделяются на:
- Термоэлектрические (термопары);
- Терморезистивные;
- Полупроводниковые;
- Акустические;
- Пирометры;
- Пьезоэлектрические.
Термоэлектрические датчики температуры (термопары)
Принцип работы этой группы датчиков основан на том, что в замкнутых контурах проводников или полупроводников возникает электрический ток, если места спайки различаются по температуре.
Для измерения температуры, один конец термопары помещают в среду измерения, а другой служит для снятия значений.
Единственным, но существенным недостатком этого вида измерителей является их довольно большая погрешность, что недопустимо для многих технологических процессов.
Примером такого датчика может служить датчик ТСП Метран-246, который предназначен для измерения температуры твердых тел.
Он применяется в металлообработке, и служит для контроля температуры подшипников. Диапазон измерения от -50 до +120 градусов по Цельсию, выходной сигнал для считывания – аналоговый.
Видео о датчиках температуры смотрите ниже:
Терморезистивные датчики
Как следует из названия, этот тип датчиков работает по принципу изменения сопротивления проводника при изменении его температуры. Благодаря простой и надежной конструкции, датчики этого типа широко применяются в электронике и машиностроении. Неоспоримым плюсом этих измерителей является высокая точность, чувствительность и простые устройства считывания.
Примером терморезистивного датчика может служить модель 700-101BAA-B00, которая имеет начальное сопротивление в 100 Ом, и диапазон измерений от -70 С° до +500 С°.
Выполнен он с применением платиновой пластинки и никелевых контактов. Широко используется в электронике и промышленных автоматах.
Полупроводниковые термодатчики
Этот тип датчиков работает на принципе изменения характеристик p-n перехода под воздействием температуры. Так как зависимость напряжения на транзисторе от температуры всегда пропорциональна, можно сделать датчик с высокой точностью измерения.
Несомненными плюсами такого решения является дешевизна, высокая точность данных, и линейность характеристик на всем диапазоне измерения.
Кроме того, их можно монтировать прямо на полупроводниковой подложке, что делает этот тип датчиков незаменимым для микроэлектронной промышленности.
Примером такого устройства может стать датчик LM75A. Температурный диапазон — от -55 С° до +150 С°, погрешность измерений – ±2 С°. Шаг измерения – всего 0,125 С°. напряжение питания – от 2.5 до 5.5 В, а время преобразования сигнала – до 0.1 секунды.
Акустические датчики температуры
Принцип работы этих устройств – разная скорость звука в среде при разной температуре. Зная изначальные данные, можно рассчитать изменения температуры по скорости прохождения звуковой волны в веществе.
Это бесконтактный метод, позволяющий измерять температуру в закрытых полостях, а также в среде, недоступной для прямого измерения.
Используются такие датчики в медицине и промышленности – там, где проникновение к измеряемому веществу невозможно.
Пирометры (тепловизоры)
Бесконтактный тип термодатчиков, считывающих излучение, которое исходит от нагретых тел. Этот тип устройств позволяет измерять температуру дистанционно, без приближения к среде, в которой производятся замеры. Это позволяет работать с большими температурами и сильно разогретыми объектами без опасного сближения.
Все пирометры по принципу работы подразделяют на интерферометрические, флуоресцентные и датчики на основе растворов, меняющих цвет в зависимости от температуры.
Пьезоэлектрические датчики температуры
Все датчики этого типа работают при помощи кварцевого пьезорезонатора. Вся суть работы – прямой пьезоэффект, то есть изменение линейных размеров пьезоэлемента под воздействием электрического тока.
При попеременной подаче разнофазного тока с определенной частотой, пьезорезонатор колеблется, при этом частота его колебаний зависит от температуры.
Зная эту зависимость, можно легко преобразовать данные о частоте колебаний резонатора в температуру.
Ещё одно видео о разновидностях термодатчиков:
Благодаря широкому диапазону измерений и высокой точности, такие датчики применяют в основном при проведении исследований и опытов, где нужна высокая надежность и долговечность.
Источник: /pue8.ru/vybor-elektrooborudovaniya/804-datchiki-izmereniya-temperatury-tipy-printsip-raboty.html
Датчик температуры охлаждающей жидкости: 7 признаков неисправности
Датчиков в автомобиле существует множество. Все они контролируют работу различных систем автомобиля и его двигателя. Если датчики выдают некорректные показания, то работоспособность автомобиля ставится под угрозу. То же самое можно сказать и о ДТОЖ.
ДТОЖ предназначен для поддержания стабильной работы двигателя внутреннего сгорания (далее ДВС). За счёт ДТОЖ автомобиль быстрее прогревается и меньше достигает слишком высоких температур. Некоторые путают ДТОЖ с датчиком указателя температуры охлаждающей жидкости. Это — два совершенно разных прибора.
ДТОЖ предоставляет свои показания электронному блоку управления двигателем, а второй датчик уведомляет водителя о температуре рабочей жидкости в системе охлаждения. Выход из строя второго датчика не приводит к серьёзным последствиям в отличие от первого.
Говоря о ДТОЖ, следует также упомянуть о назначении системы охлаждения двигателя, так как работа этих двух агрегатов неразрывно связана. Чаще всего используется жидкостная система охлаждения, главной задачей которой является отведение тепла от двигателя.
Кроме этого, система также несёт функции охлаждения масла в системе смазки, воздуха, который циркулирует в системе турбонаддува, отработавших газов, рабочей жидкости коробки передач. Также у неё имеется функция нагревания воздуха в системах вентиляции и отопления.
Работа столь важной системы автомобиля напрямую зависит от такой маленькой детали, как ДТОЖ. Поэтому не стоит недооценивать датчик и пренебрегать его диагностикой.
ДТОЖ по своему устройству напоминает резистор. Конструкция датчика предусматривает изменение его сопротивления электрическому току при колебаниях температуры окружающей среды. Эти изменения фиксируются и используется для подачи команд ДВС.
Предшественниками современных ДТОЖ были термореле. Термореле были установлены в системах впрыска. Когда контакты находились в открытом положении, двигатель нагревался. Если контакт замыкался — значит двигатель уже достаточно прогрелся (достиг рабочей температуры).
В основе устройства современных ДТОЖ лежит термистор, который и устанавливает зависимость сопротивления от температуры. В основе термистора лежат оксиды кобальта и никеля. При росте температуры в этих веществах растёт количество свободных электронов, за счёт чего и падает сопротивление.
Некоторые термисторы в ДТОЖ характеризуются отрицательным температурным коэффициентом. При этом термистор выдаёт максимальные показатели при холодном двигателе. На датчик подаётся напряжение около 5 вольт. После этого по мере прогревания силового агрегата сопротивление понижается.
Электронный блок управления (далее ЭБУ) двигателем следит за изменением напряжения и рассчитывает температуру жидкости. После нагревания двигателя ЭБУ начинает обеднять топливную смесь. Неисправность ДТОЖ может также привести к ошибочному обогащению топливной смеси.
Результатом этого будет усиленное загрязнение атмосферы и преждевременный выход из строя свечей.
Если количество оборотов двигателя при запуске будет недостаточным — может произойти остановка двигателя. Уплывающая команда ЭБУ на повышение оборотов может это предотвратить. Для поддержания управляемости в процессе запуска двигателя клапан рециркуляции должен быть закрыт до тех пор, пока двигатель не достигнет своей установленной рабочей температуры.
Здесь результатом неисправности ДТОЖ будут плавающие обороты двигателя. Двигатель при этом тоже может остановиться.
Угол зажигания также зависит от функционирования датчика, так как этот параметр регулируется системой. Выброс вредных газов при такой регулировке значительно снижается.
В конечном итоге мощность и тяга двигателя, а также уровень потребления топлива напрямую зависят от работы ДТОЖ.
Таким образом, ДТОЖ очень важен для корректного функционирования автомобиля.
Место установки датчика
Где находится датчик температуры охлаждающей жидкости в автомобиле? У разных моделей место установки ДТОЖ различается.
Чаще всего он устанавливается в головке блока цилиндров возле корпуса термостата или на нём.
Обязательным является расположение датчика возле отводящего патрубка, по которому охлаждающая жидкость поступает обратно в радиатор. Такое расположение необходимо для точности передачи данных в ЭБУ.
Виды датчиков
ДТОЖ классифицируются по принципу зависимости от изменения сопротивления:
- ДТОЖ с отрицательным температурным коэффициентом. Принцип работы таких датчиков заключается в том, что внутреннее сопротивление уменьшается по мере роста температуры и наоборот.
- ДТОЖ с положительным температурным коэффициентом. Принцип работы противоположен предыдущей разновидности датчиков. В этих датчиках сопротивление увеличивается при росте температуры.
В настоящее время наиболее популярен первый тип датчиков. Иногда в автомобиле встречаются сразу два датчика: основной и дополнительный.
Основной датчик выполняет функцию передачи значения температуры на ЭБУ, а дополнительный — включение вентилятора.
Принято считать, что ДТОЖ достаточно надёжен из-за своей нехитрой конструкции. Однако рано или поздно практически каждый агрегат автомобиля подвергается износу. В случает с ДТОЖ имеет место быть нарушение градуировки. Такое нарушение приводит к незапланированному изменению сопротивления и некорректной работе ЭБУ.
Самым явным признаком выхода из строя ДТОЖ является отсутствие включения в работу вентилятора во время того, как температура повышается выше установленных значений.
Этот показатель не считается достоверным, если в автомобиле присутствуют одновременно основной и дополнительный датчики. В этом случае на неисправность точнее укажет окисление проводки или выход из строя дополнительного датчика. Основные признаки неисправности ДТОЖ следующие:
- падение оборотов двигателя или самопроизвольная его остановка на холостом ходу;
- более длительное время прогрева автомобиля;
- учащённый выход двигателя за рамки оптимального температурного режима во время работы;
- увеличенный расход топлива;
- снижение контроля над автомобилем у водителя;
- дым из выхлопной трубы приобретает чёрный оттенок;
- нарушение стабильности работы двигателя.
Кроме этого иногда возможны детонационные постукивания в двигателе. На некоторых старых моделях автомобилей есть специальный контроллер. Когда стрелка этого контроллера выходит за пределы критической зоны, автомобиль необходимо немедленно остановить.
В этом случае порой тоже имеет место неисправность ДТОЖ. А в более современных моделях о перегреве двигателя водителей уведомляет бортовой компьютер. Но такое сообщение не всегда указывает на неисправность именно датчика.
Часто это происходит из-за обрыва проводки и её окисления.
Причины возникновения неисправностей
Поломка ДТОЖ достаточно редко беспокоит автолюбителей вследствие своей простой конструкции. Но причин выхода из строя всё же достаточно. Использование некачественного антифриза и моторного масла приводит к разрушению поверхности ДТОЖ. Чувствительный элемент датчика может покрываться осадком в виде кристаллов. Причина может крыться и в производственном браке.
Не стоит покупать ДТОЖ на барахолках и различных дешёвых рынках автозапчастей. ДТОЖ, купленный на таком рынке, зачастую не будет отвечать заявленным параметрам и малейшие повреждения приведут к выходу датчика из строя. Утечка антифриза может привести к износу прокладки.
Скачок напряжения в бортэлектросети и коррозия контактов также могут быть причиной выхода из строя датчика.
Проверка работоспособности датчика температуры охлаждающей жидкости
Необходимые инструменты и оборудование
Для процедуры проверки, снятия и замены датчика вам понадобятся следующие инструменты:
- ключ на 19;
- мультиметр;
- ёмкость, в которую вы будете сливать охлаждающую жидкость (подойдёт обычное ведро);
- электрический чайник для нагрева воды;
- термометр;
- ёмкость для горячей жидкости (подойдёт стакан или маленькое ведро).
Порядок проверки
Как проверить датчик температуры охлаждающей жидкости? Этот процесс недолгий и не требует какой-то специальной диагностики в автосалоне.
Не забывайте — для того, чтобы датчик корректно указывал температуру охлаждающей жидкости, необходимо, чтобы ДТОЖ был погружён в эту жидкость. Для этого необходимо регулярно проверять наличие в системе хладагента. Эта проверка — первый этап, который стоит предпринять при возникновении подозрения о неисправности ДТОЖ.
Следующим этапом будет проверка контактов на окисление и коррозию. Также необходимо выявить нарушения подключения ДТОЖ к системе.
Изучив инструкцию по эксплуатации автомобиля, уточните количество и расположение датчиков. После этого найдите ДТОЖ и установите, что с его подключением всё в порядке.
Для этого ДТОЖ придётся демонтировать, так как проверка связана с его погружением в ёмкость для горячей жидкости.
Возьмите датчик и опустите его в ёмкость с кипятком. Далее необходимо замерить сопротивление на выходе. При этом датчики на разных моделях автомобиля будут показывать разные значения. В интернете доступны таблицы с оптимальным сопротивлением для каждой модели.
Если показатели эталонной и измеренной величин различны, то ДТОЖ подлежит замене. Конструкция датчика настолько проста, что не предусматривает ремонт.
Как проверить датчик температуры охлаждающей жидкости? Необходимо опустить его в нагретую воду (как было сказано выше). Затем возьмите термометр и опустите его в ёмкость с холодной водой. Рекомендуется использовать электронный термометр.
Подключите к датчику мультиметр, который настроен на измерение сопротивления. Затем опустите ДТОЖ в воду и проведите измерения. Затем ёмкость с холодной водой нагревается до 15, 20, 25 градусов, а полученные результаты измерений фиксируются.
Если результаты не совпали с эталонными — потребуется замена.
Существует способ проверить ДТОЖ и без термометра. Температура воды при кипении достигает 100 градусов. Эта температура берётся за основу и измеряется сопротивление. При кипении воды сопротивление должно равняться примерно 176,7 ом. С погрешностями оно может достигать около 190 ом. В случае несовпадения показателей также потребуется замена датчика.
В качестве примера ниже приведена таблица зависимости температуры от сопротивления.
Температура в градусах Цельсия | Сопротивление (Ом) |
5 000 — 6 500 | |
10 | 3 350 — 4 400 |
20 | 2 250 — 3 000 |
30 | 1 500 — 2 100 |
40 | 950 — 1400 |
50 | 700 — 950 |
60 | 540 — 675 |
70 | 400 — 500 |
80 | 275 — 375 |
90 | 200 — 290 |
100 | 150 — 225 |
Замена датчика температуры охлаждающей жидкости
Замена датчика температуры охлаждающей жидкости легко проводится самостоятельно. Перед заменой необходимо предварительно слить охлаждающую жидкость в подготовленную ёмкость. Далее выполняется демонтаж старого датчика.
ДТОЖ вкручен в специальное отверстие с резьбой. Выкрутите и извлеките его, а затем в обратном порядке установите новый датчик.
Перед монтажными работами уточните в инструкции по эксплуатации автомобиля точное расположение датчика.
После приобретения нового датчика рекомендуется проверить его на предмет брака методами, описанными выше. Перед вкручиванием нового датчика в посадочное место резьбу рекомендуется обработать герметиком.
После установки нового датчика к нему подсоединяется проводка. Затем охлаждающая жидкость в системе должна быть доведена до нормы. То есть недопустимы протекания жидкости.
Убедившись в их отсутствии, можно запускать двигатель.
Заключение
Мы выяснили, что ДТОЖ представляет собой необходимый компонент силового агрегата. Его отказ может привести к серьёзным нарушениям в работоспособности автомобиля. Признаки поломки ДТОЖ очень разнообразны и их легко спутать с причинами поломки других агрегатов автомобиля.
Поскольку ДТОЖ представляет собой терморезистор, то сведения об изменении температуры окружающей среды он передаёт путём изменения электрического сопротивления.
Приборы, изготовленные разными производителями, выдают различные перепады сопротивления при одних и тех же температурных показателях. Поэтому, приобретая новый датчик, следует удостовериться в том, что он подходит для модели вашего автомобиля.
Своевременная диагностика датчика температуры охлаждающей жидкости поможет избежать весьма неприятных проблем, связанных с использованием автомобиля. Удачи и лёгких дорог!
Пожалуйста, оцените этот материал!
(4
Источник: /motorsguide.ru/system/zamena-datchika-temperatury-ohlazhdayushhej-zhidkosti
Принцип работы и особенности датчиков температуры, классификация и область применения
Современное производство просто немыслимо без автоматизации различных технологических процессов.
Начиная от атомной станции и заканчивая автомобилями, везде можно обнаружить элементы автоматического контроля и регулирования необходимых параметров.
Давление, угловая и линейная скорости, температура и многие другие параметры необходимо контролировать для более эффективной работы всего производства или машины.
Среди общего многообразия контролируемых параметров около половины занимает измерение и контроль температуры. Причём одной из наиболее важных деталей всей системы является датчик.
Исходя из того, что условия и диапазоны температур могут сильно варьироваться, датчики и первичные преобразователи исполняются с различными свойствами и качествами в зависимости от технологических требований.
Сам по себе датчик измерения температуры является устройством, способным получать измеряемую величину и преобразовывать её в сигнал для последующей обработки и регулировании контролирующим прибором.
Проще говоря, он является преобразователем одной величины (температуры) в другую величину (электрический ток, сопротивление), которую способен обработать прибор (к примеру, регулятор температуры) и на основании полученных данных выполнить действия, для которых создаётся сам этот прибор.
К примеру, при достижении температуры выше заданной прибор может отключить исполнительный механизм для остановки источника (среды) нагрева.
Виды датчиков температуры
Ввиду того что условия и диапазоны измерений для разных задач могут сильно отличаться, а требования к измерению различных температурных параметров быть разными, соответственно, и для выполнения тех или иных задач термопреобразователь должен соответствовать этим условиям и определённым требованиям. Поэтому они могут быть разными и использовать в работе различные свойства материалов. Таким образом, датчики бывают:
- Полупроводниковые;
- Терморезистивные;
- Акустические;
- Термоэлектрические;
- Пьезоэлектрические;
- Пирометры.
Коротко опишем особенности каждого из них, чтобы можно было представлять, в каких случаях необходимо использовать тот или иной прибор.
Полупроводниковые термоэлектрические
Термопреобразователи этого типа востребованы в производствах, так как являются недорогими и довольно точными приборами с низкой погрешностью.
Под воздействием температуры такой датчик регистрирует изменения в свойствах p-n перехода. Здесь может использоваться практически любой диод или же биполярный транзистор.
Высокая точность полупроводниковых термодатчиков достигается за счёт зависимости напряжения на транзисторе от абсолютной температуры.
Терморезистивные термоэлектрические преобразователи
Основными положительными сторонами подобных термодатчиков является их долговечность, стабильность и высокая чувствительность. Они прекрасно вписываются практически в любую схему.
Работа таких термопреобразователей основывается на изменении сопротивления под действием температуры на проводник или полупроводник. Проще говоря, они содержат в своей конструкции терморезистор, который реагирует на изменение замеряемой среды.
В зависимости от материала, используемого в терморезистивных термодатчиках, их разделяют на:
- Кремниевые резистивные, которые отличаются долговременной стабильностью и высокой точностью.
- Резистивные детекторы температуры, отличающиеся высокой стабильностью, прочностью и точностью. В основе их работы заложена способность металлов изменять своё сопротивление при воздействии температуры. Чаще в таких датчиках используют платину или медь, а при контроле особо высоких температур — вольфрам. Единственным их недостатком является относительно высокая стоимость.
- Работа термисторов основана на использовании металлооксидных соединений. Применяют их лишь для замеров абсолютных температур. Основным из минусов можно выделить необходимость калибровки и недолговечность.
Акустические бесконтактные устройства
Такой тип температурного датчика применяется преимущественно для измерения высоких температур. Принцип действия их основан на изменении характеристик звука при различных температурах. Состоит такой термодатчик из приёмника и излучателя. Звук, проходя через исследуемую среду, попадает в приёмник, где фиксируются его параметры, и на их основе определяется температура.
Акустические термодатчики часто используются в медицине и там, где невозможно измерить температуру контактными способами. Одним из основных их недостатков является низкая точность измеряемых температур и высокая погрешность вследствие дополнительных особенностей.
Термоэлектрические датчики
Термоэлектрические датчики, или, проще говоря, термопары отличаются широким спектром измеряемых показателей — от -200 до 2200 градусов Цельсия. При этом их возможности зависят от использованных материалов.
Так, термопары из неблагородных металлов позволяют измерять температуру до 1100 °C, с благородными до 1600 °C, а для замера особо высоких терморежимов используются термопары с тугоплавкими металлами типа вольфрама.
Принцип работы термоэлектрических датчиков основан на эффекте Зеебека, т. е. используются спаи разнородных металлов, образующих замкнутый контур, в котором возникает электрический ток, когда места спаев имеют различную температуру.
Состоит термопара из двух концов: рабочий и свободный. Первый погружается непосредственно в рабочую среду, а второй нет.
Таким образом, возникает разность температур, что отображается в виде выходного напряжения, которое фиксируется мультивольтметром, зачастую входящим в комплект с термоэлектрическим датчиком.
Пьезоэлектрические кварцевые приборы
Принцип работы датчика температуры пьезоэлектрического основан на использовании кварцевого пьезорезонатора. Используемый в нём пьезоматериал исполняет роль резонатора.
Когда на него подаётся электрический ток, то этот материал начинает колебаться при воздействии разных терморежимов, и частота колебаний также изменяется, что и положено в основу пьезоэлектрических датчиков.
Бесконтактные термопреобразователи пирометры
Бесконтактные датчики, способные фиксировать тепловое излучение от нагретых тел, называются пирометрами. Удобство подобных приборов заключается в том, что нет необходимости помещать его непосредственно в среду. Однако без прямого контакта точность их показаний относительно низка, ведь здесь могут присутствовать побочные явления, влияющие на показания.
Существует три типа пирометров:
- Интерферометрические пирометры испускают два луча, которые проходят один через среду, а второй является контрольным. Два этих луча попадают на кремниевый чувствительный элемент, после чего сравнивается преломление и длина лучей, непосредственно зависящие от нагрева среды.
- Флуоресцентные термодатчики работают по более сложному принципу: на поверхность, где необходимо замерить количество тепла, наносятся компоненты на основе фосфора. После этого объект подвергается ультрафиолетовому импульсному излучению, в результате чего происходят определённые реакции, а излучение подвергается анализу.
- Датчики, которые содержат растворы, способные менять окраску под воздействием температур. Хлорид кобальта, применяемый в подобных пирометрах, при контакте с измеряемой средой способен изменять цветовой спектр в зависимости от степени нагрева. Таким образом, величина света, проходящего через раствор, позволяет измерять необходимые термопараметры.
Правила выбора
Все вышеперечисленные датчики превосходно выполняют свои функции в заданных пределах. Однако нужно понимать, что выбирать и использовать их необходимо исходя из требований в конкретно взятом случае.
Поэтому при выборе того или иного термопреобразователя стоит уделять внимание следующим моментам:
- Величина температурного диапазона.
- Возможность погрузить датчик в измеряемую среду. Если такая возможность отсутствует, то стоит прибегнуть к помощи пирометров или акустических датчиков.
- Условия измерения являются одним из наиболее важных моментов при выборе датчика. Здесь стоит учитывать не только агрессивность среды, но и такие параметры, как: давление, влажность и т. д. Поэтому выбирать стоит либо бесконтактные датчики, либо в коррозиестойких корпусах.
- Природа выходного сигнала всегда также должна учитываться. Ведь одни термопреобразователи могут сразу пересчитать сигнал в градусы, а другие выдают его лишь в величине тока.
- Некоторые датчики довольно нестабильны и недолговечны, что также стоит брать во внимание. Поэтому если требуется долгая работа без замены и калибровки, то этот нюанс также должен быть учтён.
- Нелишним будет при выборе датчика под определённые потребности обращать внимание и на время срабатывания, разрешение и погрешность, рабочее напряжение питания, тип корпуса.
Учтя все вышеперечисленные нюансы, можно подобрать датчик, полностью соответствующий по своим характеристикам в отдельно взятой ситуации и для конкретно поставленных задач.
Источник: /220v.guru/elementy-elektriki/datchiki/datchik-temperatury-princip-raboty-izmereniya-i-temperaturnyy-diapazon.html
Датчики температуры охлаждающей жидкости, наружного воздуха, влажности
Для контроля климата в жилом помещении и температуры во время производственных процессов используются специальные устройства. Предлагаем рассмотреть, как работают датчики температуры, всасываемого воздуха на впуске, воды, газов, топлива и влажности, их принцип работы и виды.
Общие сведения про датчики
Датчики температуры представляют собой устройства, используемые для измерения температуры среды. Типы температурных датчиков:
- накладные контактные датчики.
Фото – Накладные контактные датчики - бесконтактные датчики.
Фото – Бесконтактные датчики температуры
Тем не менее, известны еще 3 дополнительных типа информаторов: термометры, резистивные датчики температуры и термопара (терморегулятор). Все эти контроллеры работают при помощи измерения физических свойств (т.е. объема жидкости, текущей через провод), который изменяется в зависимости от температуры.
Видео: обзор датчиков температуры
Контактные датчики
Датчики контакта температуры могут измерять температуру объекта, в контакте с которым находится датчик, но если предположить, что датчик и объект находятся в тепловом равновесии, то между ними нет теплового потока.
Данный подвид информаторов представлен следующими устройствами:
- Термопары
- Датчики сопротивления температуры (работают при помощи указателя, у них наиболее оптимальное соотношение цена/качество)
- Заполненные термометры
- Полупроводниковые биметаллические термометры
- Промышленные бесконтактные и беспроводные датчики температуры.
Фото – Датчики сопротивления температуры
Большинство коммерческих и научных бесконтактных датчиков температуры и измерения внешней тепловой мощностью излучения инфракрасного или оптического излучения, работают от известной или расчетной области на поверхности или объеме измеряемой жидкости.
Примером бесконтактного датчика температуры является пирометр.
Термометры являются наиболее распространенными датчиками температуры, эксплуатируемые в простых, повседневных измерениях температуры, их используются для котлов, в сигнализациях. Самые популярные биметаллические термометры.
Комнатный термометр с жидкостью
До сих пор одними из самых доступных датчиков измерения температуры считаются заполненные термометры. В тубу добавляется жидкость, которая чувствительна к изменению температуры, чаще всего это окрашенный спирт или ртуть.
Под изменением температурного уровня снаружи тубы, жидкость расширяется и поднимается, по таблице-циферблату можно определить, какой уровень температуры сейчас в помещении.
Этот способ хорош, если не требуется высокая точность, ведь при использовании такого измерителя возможна погрешность почти в градус, к тому же, спиртовые модели очень быстро теряют показатели при резком изменении температур, их сложно зафиксировать.
Фото – Комнатный термометр с жидкостью
Жидкость должна иметь относительно большой коэффициент теплового расширения, так что небольшие изменения в температуре приведет к обнаруживаемым изменениям в объеме.
Материал трубки – стекло, иногда закаленное, но обязательно прозрачное, чтобы можно было видеть маркированную таблицу.
Раньше ртуть была более распространена, но её уровень токсичности слишком высок, что может привести к непоправимому ущербу при бытовом использовании.
Хотя заполненные регуляторы являются самыми простыми и дешевыми вариантами для измерения температуры, они также отличаются недолговечностью в виду своей хрупкости. Также их редко применяют при осуществлении даже небольших производственных процессов, т.к. нет возможности регулировать их работу в автоматическом режиме.
В биметаллическом термометре используется два металла (обычно сталь и медь) с различными коэффициентами теплового расширения, они крепятся друг к другу с помощью заклепок или сварки.
По мере повышения температуры, увеличивается расстояние между полосами, металл с высшим коэффициентом теплового расширения расширяется в большей степени, в результате чего появляется напряжение в материалах и отклонение в полосе.
Величина этого отклонения является разницей температуры.
Фото – Биметаллический термометр
Температурные разности, для которых эти термометры могут быть использованы, ограничивается диапазоном, в котором металлы имеют существенно различные коэффициенты теплового расширения.
Биметаллические полосы часто свернутые в трубах и помещены в термостаты. Перемещаемый конец полосы представляет собой электрический контакт, который передает температуру термостата.
Поэтому они могут контролироваться специальными автоматическими устройствами.
Датчики сопротивления температуры
На производственных работах обычно используется механический или электронный погружной резистивный датчик температуры наружного воздуха (также известный как термометр сопротивления). В отличие от заполненных термометров, индикатор сопротивления выдает электрический сигнал измерения температуры, тем самым делая его более удобным для использования с компьютеризированной системой.
Фото – Датчики сопротивления температуры
Устройство сопротивления использует зависимость между электрическим сопротивлением и температурой, которая может быть линейной или нелинейной. Главным отличием этих приборов является их высокая точность, у них допустимая погрешность около 0,01 градуса по Цельсию.
Однако при высоких температурах (выше 700 градусов С), они становятся очень неточными из-за деградации наружной оболочки, которая содержит термометр.
Таким образом, использование датчиков сопротивления является предпочтительным при более низких температурных диапазонах, где они могут быть наиболее точными, к тому же их проверка осуществляется гораздо проще, чем у биметаллических.
Бывает несколько видов датчиков: с терморезистором и традиционные. Традиционные термометры сопротивления использую чувствительные металлические элементы, которые приводят к линейной зависимости между температурой и сопротивлением.
Так как температура металла увеличивается, увеличение случайного молекулярного движения препятствует потоку электронов. Повышенное сопротивление давления измеряется через металл как снижение тока, образуется фиксированное напряжение.
Выносной электронный термистор использует полупроводниковый датчик, что дает функцию зависимости мощности между температурой окружающей среды, отопления и сопротивлением.
Термопара
Другой цифровой датчик температуры двигателя и выхлопных газов, который часто используются в промышленности – это термопара. Среди различных датчиков температуры, доступных, термопара широко используется датчик температуры масла и впускного воздуха. Как и аналоговые устройства сопротивления, данные приборы работают при помощи электронной схемы.
Фото – Термопара
Конструкция термопары
Термопара представляет собой тубу, продолговатой, стержнеобразной формы, что позволяет размещать устройство в труднодоступных местах. К примеру, в котлах, двигателях, узких вентиляционных проходов.
Любой (уличный и бытовой) датчик температуры воздуха содержит внешнюю оболочку или гильзу. Гильза защищает содержимое термопары от механического и химического повреждения.
В гильзе находится металлическая проволока, иногда две, каждая состоит из различных металлов. Возможны различные комбинации материалов для этих металлических проволок. Монтаж осуществляется при помощи специальных креплений и планок для жесткой фиксации термометрических систем.
Все счетчики имеют индивидуальные технические характеристики. Рассмотрим, какие показатели имеет электронный канальный датчик температуры охлаждающей жидкости и контроля окружающей среды:
- Размер: три провода в TO-92 корпусе (0,2″х 0,2″х 0,2″)
- Температурный диапазон: начальный в -40 градусов Цельсия и составляет до 150 градусов (в зависимости от типа температура может быть более высокой). Если превысить эти показатели, то возникнет неисправность.
- Диапазон температур перед выходом: после 125 градусов С, точность падает. 2,0 В при 150 градусов С и 0,1 В при температуре -40 градусов С.
- Требуемая мощность: максимум 5,5 В питания, 0.05 А тока.
Подключение всех аналоговых приборов не имеет никаких сложностей. В большинстве случаев достаточно просто включить устройство в сеть питания, проверить разъем и напряжение. Единственное замечание – это продумать его расположение, чтобы датчик максимально точно определил колебания температуры.
Как подобрать датчик температуры
Датчики температуры на снегоход, в шинах для автомобиля или прочих движущихся устройств выбираются сугубо индивидуально (в большинстве случаев можно воспользоваться продукцией фирмы-изготовителя техники, это PT100, Гольф 2, ВАЗ 2110, PT1000, Калина, NTC, Приора).
Фото – Датчик для компьютера
Для компьютера информаторы подбираются строго исходя от параметров оргтехники, в этом случае температурные датчики (реле) служат для предотвращения перегревания процессора, и представлены марками DS18B20, G62, GSM.
Таким же образом выбираются устройства для измерения выделяемого теплого воздуха для холодильников, их изготавливает компания Siemens, ТСМ и УМЗ.
Иногда для более точного контроля температуры необходимы инфракрасные контроллеры (на химических, биологических и сталелитейных заводах).
Для измерения температуры на борту и за бортом автомобиля, снегоходов и т.д.
Вам также понадобится купить специальные датчики, они представлены марками Лада, Ланос, Дэу Нексия, Метран, Рено Логан, Шевроле, Ауди, Фокус Форд, Грант, Фольсваген Пассат, ВАЗ Нива, Мерседес, Хонда, Газель.
При выборе модели для салона учитывайте, чтобы она была размещена как можно дальше от печи, и на 20 см выше пола. При необходимости замена прибора легко осуществляется своими руками, схема к каждому датчику идет вместе с инструкцией.
Источник: /asutpp.ru/datchiki-temperatury.html
Датчики температуры
Термометр сопротивления (Resistance Thermometer) — датчик для измерения температуры, принцип действия которого основан на зависимости электрического сопротивления от температуры.
Термосопротивления могут быть металлические (платина, никель, медь) или полупроводниковые.
Для большинства металлов температурный коэффициент сопротивления положителен — их сопротивление растёт с ростом температуры.
Для полупроводников без примесей он отрицателен — их сопротивление с ростом температуры падает.
Термисторы
Термисторы – это полупроводниковые термосопротивления с большим температурным коэффициентом.
- PTC-термисторы (Positive Temperature Coefficient), обладают свойством резко увеличивать свое сопротивление, когда достигнута заданная температура – широко используются для защиты двигателей
- NTC-термисторы (Negative Temperature Coefficient), обладают свойством резко уменьшать свое сопротивление при достижении заданной температуры
PT100, PT1000
Платиновые термометры сопротивления (Platinum Resistance Thermometers) обладают высокой стойкостью к окислению и большой точностью измерения.
KTY
Кремниевые терморезисторы с положительным коэффициентом сопротивления, отличаются высокой линейностью характеристики, высоким быстродействием, надёжной твёрдотельной конструкцией и небольшой стоимостью.
Схемы включения термосопротивления в измерительную цепь
- 2-х проводная схема используется там, где не требуется высокой точности, так как сопротивление присоединительных проводов суммируется с измеренным сопротивлением, что приводит к появлению дополнительной погрешности
- 3-х проводная схема обеспечивает значительно более точные измерения, т.к. появляется возможность измерить сопротивление подводящих проводов и вычесть его из суммарного измеренного сопротивления
- 4-х проводная схема — наиболее точная схема, обеспечивает полное исключение влияния подводящих проводов
Сравнение термометров сопротивления с термопарами
Преимущества:
- выше точность и стабильность
- можно исключить влияние сопротивления присоединительных проводов на результат измерения при использовании 3-х или 4-х проводной схемы измерений
- практически линейная характеристика
- не требуется компенсация холодного спая
Недостатки:
- малый диапазон измерений
- не могут измерять высокую температуру.
Термопары
Термопара (Thermocouple) — это два проводника из разных металлов, спаянные в одной точке. Эта точка измерения температуры называется — рабочий спай. Свободные концы называются холодным спаем.
Если рабочий спай нагреть относительно холодного спая, то между свободными концами возникает напряжение (термо-ЭДС), пропорциональное разности температур.
Так как с помощью термопары всегда измеряется разность температур, то, чтобы определить температуру точки измерения, свободные концы у холодного спая должны содержаться при известной неизменной температуре.
Подключение к ПЛК
Холодные концы подключаются (непосредственно или с помощью компенсационных проводов, которые должны быть выполнены из тех же металлов, что и термопара) к клеммам соответствующего аналогового входа (с соблюдением полярности!) промышленного контроллера, который программно выполняет компенсацию температуры холодного спая и рассчитывает температуру в точке измерения.
При внутренней компенсации контроллер использует температуру модуля, к которому подключена термопара. При более точной внешней компенсации эталонная температура холодного спая измеряется с помощью дополнительного термометра сопротивления, который подключается к специальному входу контроллера.
Типы термопар
- K: хромель-алюмель
- J: железо-константан
- S, R: платина-платина/родий и др.
Термопары отличаются диапазоном измеряемых температур и погрешностью измерений.
Преимущества термопар
- Большой температурный диапазон измерения
- Измерение высоких температур.
Недостатки
- Невысокая точность
- Необходимость вносить поправку на температуру холодного конца.
Термостаты
Термостат (Thermostat) – это регулятор, который поддерживает постоянную температуру воздуха или жидкости в системах отопления, кондиционирования и охлаждения.
Источник: /maxplant.ru/article/temperature_sensor.php