Схемы светодиодных мигалок | Мастер Винтик. Всё своими руками!
Мультивибратор — простой генератор импульсов. Это одна из первых конструкций начинающих радиолюбителей. На мультивибраторе можно собрать простую мигалку на светодиодах. Итак, если Вы — начинающий радиолюбитель, то после освоения теоретической части электроники можно приступать к практике.
Схема распространённого простого мультивибратора для двух каналов представлена ниже. Светодиодов в одном плече может быть не только один, но два, три и больше если соединить их.
Трёхканальный мультивибратор
Обычно схема мультивибратора строится на двух транзисторах, как на рисунке выше и предназначен он для получения прямоугольных импульсов. Но недавно в интернете была найдена схема мультивибратора на три канала.
Рассматриваемый мультивибратор имеет три канала, которые открываются поочередно. Весь монтаж был выполнен на макетной плате, притом со значительными разбросами. В схеме использованы маломощные транзисторы типа КТ315, можно также использовать КТ312, КТ3102, а также более мощные отечественные транзисторы (КТ815, КТ817 и даже КТ819).
Выбор очень велик, можно использовать буквально любые транзисторы прямой или обратной проводимости отечественного и импортного производства. При использовании транзисторов прямой проводимости (КТ361, КТ814, КТ816, КТ818) необходимо поменять источник питания + с — , а также полярность электролитических конденсаторов.
При правильно собранной схеме в настройке мультивибраторы не нуждаются. Следует проверить весь монтаж, особое внимание нужно уделить на подключение электролитических конденсаторов. Напряжение питания подбирается в районе 4…6 вольт, хотя и от «кроны» (9В) тоже работает.
Частоту мигания, т.е. генерирования импульсов по желанию можно подбирать конденсаторами. Конденсаторы следует ставить одинаковой ёмкости, чтобы длительность импульсов была одинаковой.
Желательно подобрать разноцветные светодиоды с одинаковыми параметрами. Можно использовать буквально любые светодиоды малой мощности.
Мультивибраторы можно использовать для схем мигалок, гирлянд, а также для анимации различных устройств и игрушек. Так же это будет красивой электронной новогодней игрушкой для вашего ребенка или младшего брата, сделанной своими руками!
Схему спаял и настроил -АКА КАСЬЯН (Radioskot.ru)
- Радиомикрофон на одном транзисторе!
- Список сокращений в описаниях телевизоров.
- Овечка из ватных палочек
Этот малогабаритный радиомикрофон можно использовать не только по назначению, но и как жучок. Также может использоваться для передачи звука из одной комнаты в другую, например, чтобы узнать проснулся малыш или нет. Также как беспроводной домофон и т.п.
Модулированный ВЧ сигнал от радиомикрофона можно «поймать» на обычном УКВ-приемнике.
Подробнее…
В схемах и описаниях часто встречаются сокращения узлов телевизора. Таблица ниже, поможет начинающему радиолюбителю разобраться во всех сокращениях схем отечественных и импортных телевизоров.
Подробнее…
Интересным и забавным занятием будет изготовление поделки вместе с детьми. Ранее мы делали объёмную овечку из бумаги, а сегодня будем делать овечку из… ватных палочек.
Подробнее…
Популярность: 19 943 просм.
Источник: /MasterVintik.ru/sxemy-svetodiodnyx-migalok/
Ардуино: управление светодиодом
Как известно, первая программа, которую человек пишет при изучении программирования называется «Hello World!». Суть этой программы сводится к тому, чтобы после запуска на экране появилась указанная простая фраза.
В мире микроэлектроники, симметричной задачей смело можно назвать мигание светодиодом
Источник: /robotclass.ru/tutorials/arduino-led/
Arduino для начинающих. Урок 1. Мигающий светодиод
Сегодня мы начинаем серию уроков «Arduino для начинающих». Это самый-самый начальный уровень, с «нуля». Урок публикуем сразу в двух вариантах — текстово-графическом и видео — выбирайте, что вам ближе. В этом уроке мы приводим листинг программы и подробные комментарии и схему подключения.
Краткие сведения: Arduino (ардуино) — популярная аппаратная вычислительная платформа, основными компонентами которой являются плата ввода-вывода и среда разработки.
Arduino может использоваться как для создания автономных интерактивных объектов, роботов, так и подключаться к программному обеспечению, выполняемому на компьютере.
Платы имеют аналоговые и цифровые порты, к которым можно подключить практически любое простое устройство: кнопка, датчик, мотор, экран. Подробнее об Arduino вы можете прочитать в одном из наших постов.
Arduino часто входит в учебные программы по робототехнике и изучается в кружках робототехники. Но плата популярна и в создании «настоящих» роботов. Именно Arduino может стать «мозгом» вашего робота.
Итак, видео-инструкция сборки мигающего светодиода на Arduino. Очень просто. Всего 2 минуты!
Для подключения мигающего светодиода на Arduino и управления им вам понадобится:
- плата Arduino
- breadboard
- 2 провода «папа-папа»
- светодиод
- резистор.
Также вам потребуется программа Arduino IDE, которую можно скачать с сайта Arduino.
Все эти комплектующие входят в большинство начальных комплектов, их также можно приобрести по отдельности. Наборы Arduino можно купить на официальном сайте и в интернет-магазинах, наиболее привлекательные цены, постоянные спецпредложения и бесплатная доставка на сайтах AliExpress и DealExtreme. Если нет времени ждать посылку из Китая — рекомендуем интернет-магазин DESSY.
Breadboard представляет из себя сетку из гнезд, которые обычно соединяются так:
Breadboard
Для удобства приводим схему подключения светодиода на Arduino:
Схема подключения светодиода на Arduino
Для работы этой модели подойдет следующая программа (программу вы можете просто скопировать в Arduino IDE):
int led = 8;
void setup()
{
pinMode(led, OUTPUT);
}
void loop()
{
digitalWrite(led, HIGH);
delay(1000);
digitalWrite(led, LOW);
delay(1000);
И тоже самое с построчными комментариями (на первых порах вы можете использовать готовые программы, не вникая в синтаксис и алгоритм):
int led = 8; //объявление переменной целого типа, содержащей номер порта к которому мы подключили второй провод
void setup() //обязательная процедура setup, запускаемая в начале программы; объявление процедур начинается словом void
{
pinMode(led, OUTPUT); //объявление используемого порта, led — номер порта, второй аргумент — тип использования порта — на вход (INPUT) или на выход (OUTPUT)
}
void loop() //обязательная процедура loop, запускаемая циклично после процедуры setup
{
digitalWrite(led, HIGH); //эта команда используется для включения или выключения напряжения на цифровом порте; led — номер порта, второй аргумент — включение (HIGH) или выключение (LOW)
delay(1000); //эта команда используется для ожидания между действиями, аргумент — время ожидания в миллисекундах
digitalWrite(led, LOW);
delay(1000);
}
На этом первый урок закончен!
Источник: /edurobots.ru/2014/03/arduino-svetodiod/
Мигающий светодиод для стоп-сигнала своими руками | Каталог самоделок
Для велосипедного стоп-сигнала можно выбрать простую схему генератора вспышек. Она не потребует настройки, но использовать в работе нужно только исправные детали.
Для схемы потребуются несколько элементов, которые представлены в следующем списке:
- Светодиоды. Для работы понадобятся две штуки. Цвет и яркость можно выбрать любые. В примере взяты зеленые на 3 Вольта. Нужно обратить внимание, что у каждого светодиода есть два выхода. Длинный соответствует «плюсу» (анод), более короткий – «минусу» (катод).
- Резисторы. Устройство будет работать как с отечественными, так и с зарубежными элементами. На резисторе, сделанном в Советском Союзе, нужно искать надпись 2,2 К. Если используется китайский, то его сопротивление можно определить по цвету. Для работы подходят неполярные резисторы, мощность которых равна 0,125 или 0,25 Вт.
- Электролитический конденсатор. Схема велосипедной мигалки подразумевает использование двух деталей емкостью 470 мкФ и 16 V. Допустимо выбирать конденсаторы большей емкости, потому что это будет влиять только на частоту вспышек светодиода. У конденсаторов также есть полярность. Чтобы не перепутать катод отмечают специальной полоской.
- Транзистор. Для работы подходит модель КТ 3107 или ее аналог BC 557. Деталь имеет три выхода: коллектор (К), базу (Б) и эмиттер (Э).
Генератор можно изготовить с помощью навесного монтажа, но лучше использовать в работе плату. Рисунок платы можно скачать в архиве.
СКАЧАТЬ АРХИВ
Распечатанную печатную плату необходимо пролудить. Посде этого подготавливают дорожки под пайку. Каждую из них обезжиривают при помощи этилового спирта или ацетона.
Затем впаивают на нужное место на плате два резистора по 2,2 кОм.
Учитывая полярность электролитических конденсаторов, их нужно закрепить на плате. Каждый их элементов должен быть на 470 мкФ и напряжением тока около 16 Вольт.
После этого впаивают в схему пару транзисторов. Специалисты обращают внимание, что на этом этапе работ важно не перепутать цоколевку деталей, иначе схема работать не будет.
На завершающем этапе впаивают светодиоды. Плюсы и минусы должны соответствовать полярности, указанной на схеме.
Если вся схема собрана верно, по при подаче напряжения генератор вспышек сразу начет работать. После удачного тестирования устройства, его можно закрепить на велосипеде или скутере. Работа светодиодов наглядно представлена на следующем видео.
При подключении более энергозатратных светодиодов, нужно увеличить питания до 12-15В и поставить более мощные транзисторы.
Поделки свои.
Источник: /volt-index.ru/electronika-dlya-nachinayushih/generator-vspyishek-svetodioda-dlya-stop-signala-na-velosiped.html
Реверс-инжиниринг мерцающего светодиода
Дешевые электронные «свечи» в последнее время, кажется, повсюду. Я не обращал на них особого внимания, пока не заметил, что на самом деле в них используется особый светодиод — со встроенным «моргательным» контроллером.
Теперь-то совсем другое дело: кому не нравятся таинственные светодиоды? Полчаса спустя я уже набрал охапку мерцающих светодиодов китайского производства.
Конечно, самый интересный вопрос — как они работают? Учитывая, что стоят они буквально по несколько центов за штуку, там внутри не может быть какой-то дорогой электроники.
В связи с этим возникает еще один вопрос: правда ли эти светодиоды хуже, чем многочисленные «свечи» на микроконтроллерах, схем которых полно в интернете?
Устройство относительно простое. В стандартном 5-миллиметровом корпусе размещены кристалл светодиода и микросхема, которая чуть больше первого по размеру. Схема контроллера соединена как с положительным, так и с отрицательным выводами. Третьей перемычкой к ней подключен анод светодиода, в то время как катодом он «сидит» на отрицательном выводе.
В блоге Evil Mad Scientist недавно был рассказ о похожих светодиодах. Там было показано, как они «поют», если преобразовать изменения яркости в звук. А также — как с их помощью управлять более мощным диодом.
Подобные трюки основаны на том, что светодиод потребляет больший ток в те моменты, когда контроллер зажигает его ярче. Обычный светодиод, включенный последовательно с мерцающим, показывает очень похожие изменения яркости.
Иными словами, падение напряжения на добавочном резисторе изменяется пропорционально яркости.
Это я и использовал, чтобы извлечь управляющий сигнал контроллера и завести его на логический анализатор (см. схему выше). Подстройкой переменного резистора я добился того, чтобы анализатор воспринимал броски тока как «нули» и «единицы», а светодиод при этом нормально работал. На диаграмме выше показаны изменения яркости диода в течение примерно минуты, записанные с частотой выборки 1 МГц. Заметны интервалы, когда светодиод непрерывно включен, и периоды, когда его яркость каким-то образом модулируется. Светодиод никогда не выключается надолго. Это разумно, ведь настоящая свеча тоже ярко светит большую часть времени, снижая яркость на короткие периоды мерцания. Более пристальный взгляд покзывает, что сигнал имеет широтно-импульсную модуляцию. Это означает, что перед нами цифровая схема, без всяких аналоговых трюков.
Любопытно, что частота сигнала — примерно 440 Гц, как у стандартного камертона (нота Ля первой октавы — прим. перев.).
Совпадение? Или разработчик просто взял генератор из какой-то музыкальной схемы? Так что есть доля правды в рассказах о «музыкальности» этих светодиодов.
Каждый «кадр» постоянной яркости составляет ровно 32 такта и длится около 72 мс. Это соответствует 13-14 кадрам в секунду.
Я написал небольшую программу для определения яркости в каждом кадре по коэффициенту заполнения ШИМ-сигнала. Программа читает поток отсчетов с логического анализатора и выводит серию вещественных чисел — по одному на каждый кадр. График яркости в зависимости от времени наводит на некоторые мысли: изменения яркости случайны, дискретны и имеют неравномерное распределение. Кажется, существуют 16 уровней яркости, низшие 4 из которых используются очень редко. Им соответствуют только 13 из 3600 отсчетов. Постороение гистограммы открывает всю картину: фактически используется только 12 уровней яркости. Ровно половина кадров имеет максимальную яркость, остальные значения распределены примерно поровну. Как это может быть реализовано на аппаратном уровне? Вполне вероятно, используется генератор равномерно распределенных случайных чисел, которые пропускают через простую функцию-формирователь. Для того распределения, которое мы наблюдаем, требуется как минимум 12×2=24 дискретных уровня. Половина из них отображаются в один. Это весьма любопытно, так как генератор, скорее всего, выдает двоичные числа. Наиболее логичной была бы разрядность числа 5 бит, а это 32 состояния. Отобразить 32-уровневую дискретную случайную величину в 24 уровня, не изменив распределения, не так просто, как кажется. Не забываем также, что это совсем не критичная схема, и у разработчика, вероятно, не было много времени на красивое решение. Поэтому он применил самое простое, своего рода хак. Единственный простой способ, что приходит на ум — просто отбрасывать неподходящие значения и брать следующее случайное число. Нежелательные значения можно легко отделить по битовой маске. Так как схема синхронная, есть только конечное число попыток, пока не начнется следующий кадр. Если контроллер не уложился в заданное количество попыток, он застрянет на «неправильном» значении. Помните редкие выбросы на графике яркости? Реализация на ANSI-C могла бы выглядеть так: char attempts=0; char out; while(attempts++15) out=15; // верхняя половина диапазона соответствует максимальной яркости
Можно узнать, сколько делается попыток? По статистике, доля a=0,25 всех чисел должн быть отброшена и сгенерирована заново. Вероятность того, что за n попыток не будет выбрано «правильное» число, равна an.
n=1 0,25 n=2 0,0625 n=3 0,015625 n=4 0,003906
Доля аномально низких уровней яркости составляет 13/3600=0,0036, что хорошо совпадает с вариантом n=4. Таким образом, MAX_ATTEMPTS==4.
Обратите внимание, что более простым решением было бы просто использовать значение из предыдущего кадра, если встретилось недопустимое число. Этот вариант можно было бы исключить, исходя из автокорреляции (см. ниже). Наиболее же простое, вероятно, решение — изменить схему ШИМ — не было здесь использовано.
Последний кусочек головоломки — это сам генератор случайных чисел. Типичным способом генерации случайных последовательностей в цифровых схемах является применение сдвиговых регистров с линейной обратной связью.
Такой регистр выдает псевдослучайную битовую последовательность, которая повторится не позже, чем через 2x-1 тактов, где x — разрядность регистра.
Одной из особенностей таких последовательностей (и хороших псевдослучайных последовательностей в целом) является то, что их автокорреляционная функция равна единице только в точке 0 и в координатах, кратных длине последовательности. Во всех остальных интервалах она нулевая.
Я рассчитал автокорреляцию всей последовательности значений. Самоподобия не было найдено вплоть до 3500 кадров (на графике выше показано только 1200), что означает уникальность мерцания на протяжении по меньшей мере 4 минут. Неясно, наблюдалось ли дальнейшее повторение последовательности, или логический анализатор автора просто не позволял записывать дольше — прим. перев. Поскольку на каждый кадр нужно как минимум 5 бит случайных данных (а учитывая механизм отбрасывания нежелательных чисел — еще больше), псевдослучайная последовательность имеет длину по меньшей мере 17500 бит. Для этого потребуется регистр разрядности не менее 17, либо настоящий аппаратный генератор случайных чисел. В любом случае, интересно, как много внимания при разработке уделили тому, чтобы картина мерцания не повторялась. В заключение ответим на вопросы, заданные в начале статьи. Мерцающий светодиод оказался гораздо сложнее, чем я ожидал (также я не ожидал потратить на него 4 часа). Многие микроконтроллерные реализации свечей просто подают биты с генератора псевдослучайных чисел на ШИМ-выход. Покупной светодиод использует более хитрый алгоритм изменения яркости. Безусловно, определенное внимание было уделено разработке алгоритма, и при этом использован кристалл почти минимально возможной площади. Доля цента потрачена не зря. Каков же лучший алгоритм мерцания? Можно ли улучшить этот?
Дополнение: Я наконец нашел время написать эмулятор. Написанная на ANSI-C программа, эмулирующая поведение этого светодиода, здесь. Код написан под AVR, но его легко портировать под любой другой контроллер. Репозиторий на Гитхабе содержит все данные и исходные коды, использованные в процессе реверс-инжиниринга светодиода.
Источник: /habr.com/post/206556/
Как сделать чтобы мигал светодиод?
На уроках физики в некоторых школах проходят тему о создании светодиодов, изучают их виды, принципы работы и пробуют самостоятельно создать прибор в лабораторных условиях. В современном мире люди очень часто сталкиваются со светодиодами в повседневной жизни, самым простым примером являются LED-лампочки.
Так что же это такое и как сделать светодиод, чтобы он мигал, читайте в нашей статье.
Светодиод – это довольно простой механизм, преобразующий электрический ток в световое излучение.
Всего существует два типа: — Индикаторные – разработаны для декоративного светового эффекта, являются украшениями, используются в разработке гирлянд, баннеров с освещением, в вывесках, электронных игрушках со светящимися элементами.
— Осветительные – используются для увеличения освещения в помещении, то есть это люстры и светильники с LED-цоколями.
Также бывают мигающие и моргающие светодиоды, их можно приобрести в специализированном магазине светодиодной продукции или же изготовить самостоятельно, у каждого хозяина найдутся необходимые элементы для их создания.
Самый простой способ создания мигающего светодиода
При помощи этого метода получится создать конструкцию при напряжении от 3 до 12 вольт. Как сделать самому мигающий светодиод, рассказано ниже. Для сборки потребуются следующие компоненты: — Резистор 6.8 – 15 Ом (2 шт). — Резисторы с сопротивлением 470 – 680 Ом (2 шт).
— Маломощные транзисторы со структурой «n-p-n» (2 шт). — Электроконденсаторы с ёмкостью 47 – 100 мкФ (2 шт). — Маломощный светодиод, цвет не имеет значение (1 шт).
— Паяльник, припой и флюс.
Напомним, перед началом работы рекомендуется зачистить выводы всех радиодеталей, а после залудить их.
Не забываем о полярности включения электролитических конденсаторов. Ниже приведена схема подключения всех вышеуказанных компонентов. Создав правильную конструкцию напряжение на R2 перестанет доходить до Т2, в это время открытым останется Т3 и R1, именно через них пройдёт ток и дойдёт до светодиода.
За счёт того, что подача тока осуществляется циклично, светодиод будет мигающий.
Метод создания моргающего светодиода на 5 вольт
Для создания данной модели понадобиться все вышеуказанные компоненты, а также одна обычная пальчиковая батарейка. Ниже предоставлена элементарная схема сборки.
В данной системе подключения имеются несколько цепочек заряда конденсаторов – это R1C1R2 и R3C2R2. После того, как С1 и С2 имеют необходимый заряд они открываются, второй конденсатор соединён с батарейкой.
Их суммарное напряжение проходит через Т2 и проникает в светодиод, за счёт этого он начинает светиться, как только напряжение исчезает он тухнет, а С1 и С2 теряют энергию. Как только напряжение к ним возвращается, происходит новый круг подачи тока в светодиод, и он снова начинает светиться.
Таким образом, за счёт батарейки и небольших познаний физики, можно в домашних условиях создать моргающий светодиод.
Мигалка на светодиоде
Взглянув на эту схему, любой человек хоть не много понимающий в механике найдёт сразу две ошибки. Первая заключается в том, что эмиттер и коллектор подключены не правильно, а вот вторая это «висящая» база. Несмотря на две технические особенности светодиод будет работать. Точка соединения КТ315 служит динистором, за счёт того, что в нём накапливается много напряжения, он отдаёт её транзистору, а тот, в свою очередь, открывается. Затем ток направляется к светодиоду и происходит свечение. По мере отступления напряжения он угасает. Далее всё происходит циклично.
В данной статье указаны сразу несколько методов создания мигающих светодиодов. Благодаря этому, можно легко починить игрушку ребёнка, освещение в доме и новогоднюю гирлянду. Углубив свои познания в технике, создание светодиодов можно применить в других механизмах, например в разработке светового сигнала при открытии или не полном закрытии дверцы холодильника, если в подъезде темно, то подобная мигающая конструкция поможет гостям найти звонок или выключатель.
Продвинутые техники могут создать сигнальный поворотник для велосипеда, это поможет пешеходам узнать, в каком направлении будет двигаться транспортное средство. В общем, мест для применения моргающих светодиодов огромное количество. Для их применения нужны элементарные познания, необходимые материалы и умелые руки!
Источник: /LedFlux.ru/blog/kak-sdelat-chtoby-migal-svetodiod/
Мигающий светодиод – находка для автомобилиста
Мигающий светодиод может быть реализован и использован несколькими способами, от чего зависит и его дальнейшая область применения. Схемы могут состоять из нескольких диодов, транзисторов, подключаться к различным источникам питания, даже к батарейкам, по-разному моргать. Собрать большинство из них можно своими руками, но иногда нужно подогнать теоретическую базу.
Один из самых простых способов реализации моргающих светодиодных индикаторов может успешно имитировать сигнализацию для автомобиля. Для авто премиум-класса это не очень актуально, а для менее элитной техники, общая стоимость которой не окупает установку дорогостоящей системы оповещения, такая схема будет в самый раз. Мигалка на светодиодах в таком случае будет оптимальным вариантом.
Мигающий светодиод как сигнализация
Купить моргающий диод для авто – избавить себя от кропотливого просиживания над обработкой платы. Это не всегда верно, но в данном случае очень подходит. Важно разобраться, почему почему мигает светодиод.
На вид такой моргающий LED-индикатор невозможно отличить от обычного светодиода, который светится постоянно. При подаче напряжения он начинает мигать пару раз в секунду. Наличие мультиметра также поможет различить полупроводниковые приборы. В прямом направлении моргающий диод демонстрирует небольшое сопротивление, а в обратном – светодиод с обычным показателем падения напряжения.
Немного о самих мигающих светодиодах
Основой мигания светодиода служит небольших размеров чип, который состоит из высокочастотного задающего генератора. Последний работает совместно с делителем на логических элементах, давая возможность получать вместо высоких значений частоты требуемые 1-3 Гц.
Чтобы реализовать низкочастотный генератор, необходимо использовать конденсатор с большой ёмкостью. Решив собрать схему своими руками, весьма проблематично было бы использовать полупроводник с большой площадью. Почему – да он просто не уместится в корпусе светодиода.
На полупроводниковой подножке размещены не только генератор и делитель, но также электронный ключ и диод-протектор. Мигающие светодиоды с напряжением питания 3-12В оборудуются также ограничительным резистором, а низковольтным он не требуется.
Основное назначение диода-протектора заключается в предотвращении поломки микросхемы в случае переплюсовки её питания.
При подаче напряжения автомобильной сети номинал токоограничивающего резистора должен выбираться из диапазона 3-5кОм. Подключив светодиод своими руками можно отметить, что он потребляет ток не только при мерцании, но и в пазах.
Сборка сигнализации своими руками
Определившись с тем, как устроены мигающие светодиоды, как они работают, и почему мигают, можно приступить непосредственно к монтажу.
Для сборки потребуется 2 гибких многожильных проводка небольшого диаметра. Предпочтительнее выбирать кабели разного цвета, чтобы иметь возможность отличать их при подключении к автомобильной проводке.
Далее нужно тщательно заизолировать места пайки при использовании обычного или термоусадочного кембрика.
Когда резистор и оба провода закреплены, можно поместить схему в толстую полимерную трубку. Окончательный этап монтажа сигнализации своими руками – подключение проводов к «+» и «-» цепи питания автомобиля. Если все мигает как надо, мигалку на светодиодах можно считать удачной.
Сборка схем своими руками на базе светодиодов пользуется огромной популярностью среди автолюбителей. Почему? Диоды дают огромные возможности для тюнинга. Замена любого освещения, внутренней подсветки и многое другое.
Источник: /le-diod.ru/dlya-avtomobilya/migayushhij-svetodiod-svoimi-rukami/
Простейшая мигалка на светодиоде
Вашему вниманию представлена, наверное, самая простая, но интересная схема мигалки на светодиоде.
Если у вас есть меленькая новогодняя елочка из блестящего дождика то вмонтированный в ее основание яркий светодиод в 5-7 Кд который не просто горит, а еще и мигает – очень простое и красивое украшение рабочего места. Питание схемы 3-12 В, может быть заменено на питание от порта USB.
Предыдущая статья также была про мигалку на светодиодах, но в отличие от нее данная статья расскажет про мигалку на одном светодиоде, что никоим образом не сужает ее область применения, я бы сказал даже наоборот.
Наверняка вы не однократно видели подмигивающий зеленый, красный или синий огонек, например, в автомобильной сигнализации. Теперь и у вас есть возможность собрать простейшую схему мигалки на светодиоде. Ниже будет представлена таблица с параметрами деталей в схеме для определения частоты вспышек.
Кроме такого применения можно использовать мигалку на светодиоде как эмулятор автомобильной сигнализации.
Установка новой автомобильной сигнализации дело не простое и хлопотное, а, имея под рукой указанные детали можно быстро собрать схему мигалки на светодиоде и вот уже ваш автомобиль на первое время «защищен». Во всяком случае от случайного взлома.
Такая «автомобильная сигнализация» — мигающий в щели торпеды светодиод отпугнет неопытных взломщиков, ведь это первый признак работающей сигналки ? Да мало ли где еще понадобится мигающий светодиод.
Частота с которой зажигается светодиод зависит от сопротивления резисторов R1 и R2 и емкости конденсатора С1. На момент отладки вместо резисторов R1 и R2 можно использовать переменные резисторы соответствующих номиналов. Для небольшого упрощения подбора элементов, в таблице ниже указаны номиналы деталей и соответствующая им частота вспышек.
Если мигалка на светодиоде при каких-то номиналах отказывается работать необходимо, прежде всего, обратить внимание на резистор R1, его сопротивление может быть слишком мало, а также на резистор R2, его сопротивление может быть слишком большим. От резистора R2 зависит длительность самих импульсов, а от резистора R1 длительность паузы между импульсами.
Схема мигалки на светодиоде с небольшими доработками может стать генератором звуковых импульсов. Для этого потребуется на место резистора R3 установить динамик сопротивлением до 4 Ом. Светодиод HL1 заменить на перемычку. В качестве транзистора VT2 использовать транзистор достаточной мощности. Кроме этого необходимо подобрать конденсатор С1 необходимой емкости.
Выбор осуществляется следующим образом. Скажем у нас элементы с параметрами из 2 строки таблицы. Частота импульсов 1Гц (60 импульсов в минуту). А мы хотим получить звук с частотой 1000Гц. Следовательно надо уменьшить емкость конденсатора в 1000 раз. Получаем 10мкФ / 1000 = 0,01мкФ = 10нФ.
Помимо этого можно поиграть с уменьшением сопротивления резисторов, но не сильно увлекайтесь, можно пожечь транзисторы.
Один из наших постоянных читателей, специально для нашего сайта предложил еще один вариант очень простой светодиодной мигалки. Смотрите видео:
Источник: /imolodec.com/lighting/prostejshaya-migalka-na-svetodiode
Мигалка светодиодная. Как самостоятельно сделать мигающий светодиод
Мультивибратор
— простой генератор импульсов.
Это одна из первых конструкций начинающих радиолюбителей. На мультивибраторе можно собрать простую мигалку на светодиодах. Итак, если Вы — начинающий радиолюбитель, то после освоения теоретической части электроники можно приступать к практике.
Простой мультивибратор
Схема распространённого простого мультивибратора
для двух каналов представлена ниже. Светодиодов в одном плече может быть не только один, но два, три и больше если соединить их.
Трёхканальный мультивибратор
Обычно схема мультивибратора строится на двух транзисторах, как на рисунке выше и предназначен он для получения прямоугольных импульсов. Но н
едавно в интернете была найдена схема мультивибратора на три канала.
Рассматриваемый мультивибратор имеет три канала, которые открываются поочередно. Весь монтаж был выполнен на макетной плате, притом со значительными разбросами. В схеме использованы маломощные транзисторы типа КТ315, можно также использовать КТ312, КТ3102, а также более мощные отечественные транзисторы (КТ815, КТ817 и даже КТ819).
Выбор очень велик, можно использовать буквально любые транзисторы прямой или обратной проводимости отечественного и импортного производства. При использовании транзисторов прямой проводимости (КТ361, КТ814, КТ816, КТ818) необходимо поменять источник питания + с — , а также полярность электролитических конденсаторов.
При правильно собранной схеме в настройке мультивибраторы не нуждаются. Следует проверить весь монтаж, особое внимание нужно уделить на подключение электролитических конденсаторов. Напряжение питания подбирается в районе 4…6 вольт, хотя и от «кроны» (9В) тоже работает.
Частоту мигания, т.е. генерирования импульсов по желанию можно подбирать конденсаторами. Конденсаторы следует ставить одинаковой ёмкости, чтобы длительность импульсов была одинаковой.
Желательно подобрать разноцветные светодиоды с одинаковыми параметрами. Можно использовать буквально любые светодиоды малой мощности.
Данная светодиодная мигалка на 12 вольт позволяет создать эффект хаотичных вспышек каждого из 6 светодиодов. Принцип работы основан на лавинном пробое p-n перехода .
Описание работы светодиодной мигалки
Опишем работу схемы на одном блоке, оставшиеся пять работают по аналогичному принципу. При подаче напряжения питания через резистор R1 начинает заряжаться конденсатор С1 и следовательно на нем начинает расти напряжение. Пока он заряжается, ничего не происходит.
После того как на выводах конденсатора напряжение достигнет 11…12 вольт, происходит лавинный пробой p-n перехода транзистора, проводимость его возрастает и как следствие этому, светодиод начинает светиться за счет энергии разряжающегося конденсатора C1.
Когда напряжение на конденсаторе падает ниже 9… 10 вольт, транзисторный переход закрывается, и весь процесс повторяется с самого начала. Оставшиеся пять блоков схемы работают также и примерно на той же частоте, но фактически частота немного отличается друг от друга из-за допусков радиокомпонентов.
В конструкции можно применить произвольные радиодетали. Необходимо отметить, что при напряжении питания менее 12 вольт схема работать не будет, поскольку не будет происходить лавинный пробой транзистора и генератор работать не будет.
Особенностью этого типа генератора является его зависимость от напряжения питания. Чем выше напряжение, тем выше частота колебаний. Верхний уровень по питанию ограничен характеристиками конденсаторов и токоограничивающих резисторов.
Значения резисторов и конденсаторов определяют частоту работы каждого отдельно взятого генератора. Резисторы, защищают транзисторы от разрушения во время лавинного пробоя.
Не следует сильно занижать сопротивление резисторов, так как это может привести к выходу из строя транзисторов. То же самое может произойти, если слишком увеличить емкости конденсаторов.
В этом случае можно посоветовать последовательно светодиоду подключить дополнительное сопротивление.
/pandatron.cz/?520&dekorativni_blikatko
У любого начинающего радиолюбителя присутствует желание поскорей собрать что-нибудь электронное и желательно, чтобы оно заработало сразу и без трудоёмкой настройки. Да и это понятно, так как даже маленький успех в начале пути даёт массу сил.
Как уже говорилось, первым делом лучше собрать блок питания . Ну а если он уже есть в мастерской, то можно собрать мигалку на светодиодах. Итак, пришло время «подымить» паяльником .
Вот принципиальная схема одной из простейших мигалок. Базовой основой данной схемы является симметричный мультивибратор . Мигалка собрана из доступных и недорогих деталей, многие из которых можно найти в старой радиоаппаратуре и использовать повторно. О параметрах радиодеталей будет сказано чуть позднее, а пока разберёмся с тем, как работает схема.
Суть работы схемы заключается в том, что транзисторы VT1 и VT2 поочерёдно открываются. В открытом состоянии переход Э-К у транзисторов пропускает ток. Так как в коллекторные цепи транзисторов включены светодиоды, то при прохождении через них тока они светятся.
Частота переключений транзисторов, а, следовательно, и светодиодов может быть приблизительно подсчитана с помощью формулы расчёта частоты симметричного мультивибратора.
Как видим из формулы, главными элементами с помощью которых можно менять частоту переключений светодиодов является резистор R2 (его номинал равен R3), а также электролитический конденсатор C1 (его ёмкость равна C2).
Для подсчёта частоты переключений в формулу нужно подставить величину сопротивления R2 в килоомах (kΩ) и величину ёмкости конденсатора C1 в микрофарадах (μF). Частоту f получим в герцах (Гц или на зарубежный манер — Hz).
Данную схему желательно не только повторить, но и «поиграться» с ней. Можно, например, увеличить ёмкость конденсаторов C1, C2. При этом частота переключений светодиодов уменьшиться. Переключаться они будут более медленно. Также можно и уменьшить ёмкость конденсаторов. При этом светодиоды станут переключаться чаще.
При C1 = C2 = 47 мкф (47 μF), а R2 = R3 = 27 кОм (kΩ) частота составит около 0,5 Гц (Hz). Таким образом светодиоды будут переключаться 1 раз в течении 2 секунд.
Уменьшив ёмкость C1, C2 до 10 мкф можно добиться более быстрого переключения — около 2,5 раз в секунду.
А если установить конденсаторы C1 и C2 ёмкостью 1 мкф, то светодиоды будут переключаться с частотой около 26 Гц, что на глаз будет практически незаметно — оба светодиода будут просто светиться.
А если взять и поставить электролитические конденсаторы C1, C2 разной ёмкости, то мультивибратор из симметричного превратится в несимметричный. При этом один из светодиодов будет светить дольше, а другой короче.
Более плавно частоту миганий светодиодов можно менять и с помощью дополнительного переменного резистора PR1, который можно включить в схему вот так.
Тогда частоту переключений светодиодов можно плавно менять поворотом ручки переменного резистора. Переменный резистор можно взять с сопротивлением 10 — 47 кОм, а резисторы R2, R3 установить с сопротивлением 1 кОм. Номиналы остальных деталей оставить прежними (см. таблицу далее).
Вот так выглядит мигалка с плавной регулировкой частоты вспышек светодиодов на макетной плате.
Первоначально схему мигалки лучше собрать на беспаечной макетной плате и настроить работу схемы по своему желанию. Беспаечная макетная плата вообще очень удобна для проведения всяких экспериментов с электроникой.
Теперь поговорим о деталях, которые потребуются для сборки мигалки на светодиодах, схема которой приведена на первом рисунке. Перечень элементов, используемых в схеме, приведён в таблице.
Название |
Обозначение |
Номинал/Параметры |
Марка или тип элемента |
Транзисторы | VT1, VT2 | КТ315 с любым буквенным индексом | |
Электролитические конденсаторы | C1, C2 | 10…100 мкф (рабочее напряжение от 6,3 вольт и выше) | К50-35 или импортные аналоги |
Резисторы | R1, R4 | 300 Ом (0,125 Вт) | МЛТ, МОН и аналогичные импортные |
R2, R3 |
Источник: /dpanorama.ru/types-of-lighting/flashing-lightemitting-diode-how-to-make-a-flashing-led/
Простые схемы мигалок на основе мигающих светодиодов для сборки своими руками
Открывать полный загадок мир радиоэлектроники, не имея специализированного образования, рекомендуется начинать со сборки простых электронных схем.
Уровень удовлетворения при этом будет выше, если положительный результат будет сопровождаться приятным визуальным эффектом. Идеальным вариантом являются схемы с одним или двумя мигающими светодиодами в нагрузке.
Ниже приведена информация, которая поможет в реализации наиболее простых схем, сделанных своими руками.
Готовые мигающие светодиоды и схемы с их использованием
Среди многообразия готовых мигающих светодиодов, наиболее распространены изделия в 5-ти мм корпусе. Помимо готовых одноцветных мигающих светодиодов, существуют двухвыводные экземпляры с двумя или тремя кристаллами разного цвета.
У них в одном корпусе с кристаллами встроен генератор, который работает на определенной частоте. Он выдает одиночные чередующиеся импульсы на каждый кристалл по заданной программе. Скорость мерцания (частота) зависит от заданной программы.
При одновременном свечении двух кристаллов мигающий светодиод выдает промежуточный цвет. Вторыми по популярности являются мигающие светоизлучающие диоды, управляемые током (уровнем потенциала). То есть, чтобы заставить мигать светодиод данного типа нужно менять питание на соответствующих выводах.
Например, цвет излучения двуцветного красно-зелёного светодиода с двумя выводами зависит от направления протекания тока.
Трёхцветный (RGB) мигающий светодиод с четырьмя выводами имеет общий анод (катод) и три вывода для управления каждым цветом отдельно. Эффект мигания достигается путём подключения к соответствующей системе управления.
Смастерить мигалку на основе готового мигающего светодиода достаточно легко. Для этого потребуется батарейка CR2032 или CR2025 и резистор на 150–240 Ом, который следует припаять на любой вывод.
Соблюдая полярность светодиода, контакты подключаются к батарейке. Светодиодная мигалка готова, можно наслаждаться визуальным эффектом.
Если использовать батарейку типа «крона», основываясь на законе Ома, следует подобрать резистор большего сопротивления.
Обычные светодиоды и семы мигалок на их основе
Начинающий радиолюбитель может собрать мигалку и на простом одноцветном светоизлучающем диоде, имея минимальный набор радиоэлементов. Для этого рассмотрим несколько практических схем, отличающихся минимальным набором используемых радиодеталей, простотой, долговечностью и надежностью.
Первая схема состоит из маломощного транзистора Q1 (КТ315, КТ3102 или аналогичный импортный аналог), полярного конденсатора C1 на 16В с емкостью 470 мкФ, резистора R1 на 820-1000 Ом и светодиода L1 наподобие АЛ307. Питается вся схема от источника напряжения 12В.
Приведенная схема работает по принципу лавинного пробоя, поэтому база транзистора остаётся «висеть в воздухе», а на эмиттер подаётся положительный потенциал.
При включении происходит заряд конденсатора, примерно до 10В, после чего транзистор на мгновение открывается с отдачей накопленной энергии в нагрузку, что проявляется в виде мигания светодиода.
Недостаток схемы заключается в необходимости наличия источника напряжения 12В.
Вторая схема собрана по принципу транзисторного мультивибратора и считается более надёжной. Для её реализации потребуется:
- два транзистора КТ3102 (или их аналога);
- два полярных конденсатора на 16В емкостью 10 мкФ;
- два резистора (R1 и R4) по 300 Ом для ограничения тока нагрузки;
- два резистора (R2 и R3) по 27 кОм для задания тока базы транзистора;
- два светодиода любого цвета.
В данном случае на элементы подаётся постоянное напряжение 5В. Схема работает по принципу поочередного заряда-разряда конденсаторов С1 и С2, что приводит к открыванию соответствующего транзистора.
Пока VT1 сбрасывает накопленную энергию С1 через открытый переход коллектор-эмиттер, светится первый светодиод. В это время происходит плавный заряд С2, что способствует уменьшению тока базы VT1.
В определённый момент VT1 закрывается, а VT2 открывается и светится второй светодиод.
Вторая схема имеет сразу несколько преимуществ:
- Она может работать в широком диапазоне напряжений начиная от 3В. Подавая на вход более 5В, придётся пересчитать номиналы резисторов, чтобы не пробить светодиод и не превысить максимальный ток базы транзистора.
- В нагрузку можно включать 2–3 светодиода параллельно или последовательно, пересчитав номиналы резисторов.
- Равное увеличение ёмкости конденсаторов ведёт к увеличению длительности свечения.
- Изменив ёмкость одного конденсатора, получим несимметричный мультивибратор, в котором время свечения будет различным.
В обоих вариантах можно применить транзисторы pnp проводимости, но с коррекцией схемы подключения.
Иногда вместо мигающих светодиодов радиолюбитель наблюдает обычное свечение, то есть оба транзистора частично приоткрыты. В таком случае нужно либо заменить транзисторы, либо запаять резисторы R2 и R3 с меньшим номиналом, увеличив, тем самым, ток базы.
Следует помнить, что питания от 3В будет недостаточно, чтобы зажечь светодиод с высоким значением прямого напряжения. Например, для светодиода белого, синего или зелёного цвета потребуется большее напряжение.
Кроме рассмотренных принципиальных схем, существует великое множество других несложных решений, которые вызывают мигание светодиода. Начинающим радиолюбителям стоит обратить внимание на недорогую и широко распространенную микросхему NE555, на которой также можно реализовать данный эффект. Её многофункциональность поможет собирать и другие интересные схемы.
Область применения
Мигающие светодиоды со встроенным генератором нашли применение в построении новогодних гирлянд.
Собирая их в последовательную цепь и устанавливая резисторы с небольшим отличием по номиналу, добиваются сдвига в мигании каждого отдельного элемента цепи.
В итоге получается прекрасный световой эффект, не требующий сложного блока управления. Достаточно только подключить гирлянду через диодный мост.
Мигающие светоизлучающие диоды, управляемые током, применяются в качестве индикаторов в электронной технике, когда каждому цвету соответствует определённое состояние (вкл./выкл. уровень заряда и пр.). Также из них собирают электронные табло, рекламные вывески, детские игрушки и прочие товары, в которых разноцветное мигание вызывает интерес у людей.
Умение собирать простые мигалки станет стимулом к построению схем на более мощных транзисторах. Если приложить немного усилий, то с помощью мигающих светодиодов можно создать множество интересных эффектов, например – бегущую волну.
Источник: /ledjournal.info/shemy/migayushhij-svetodiod-svoimi-rukami.html
Как сделать мигающий светодиод
Порядок вывода комментариев: По умолчанию Сначала новые Сначала старые
21 dr1a-138 (19.02.2020 13:53) на последней фотке средний вывод не задействован. почему?вроде средний вывод у всех транзисторов подобного типа коллектор,а на схеме он действующий.или я чтото не понимаю в этих BC547 |
0Спам2 dr1a-138 (19.02. 2015 13:55) |
0Спам
«У светодиода проверяется полярность подключивши его к источнику питания 5-10 вольт через резистор на 100 Ом.» Нужно брать резистор приблизительно по 100 Ом на каждый вольт, превышающий 3 Вольта. Для 10 вольт резистор должен быть 680-750 Ом. От батарейки на 3 Вольта светодиод можно зажечь без резистора. |
0Спам4 KALYAN-SUPER-BOS (30.03.2020 18:34) для 5 вольт 100 ом саме то. да зависити номинал резистора и от мошности блока. |
0Спам
Если светодиодов много и не жалко — подключайте. Но все же советую посмотреть в справочнике параметры светодиода. |
6 KALYAN-SUPER-BOS (30.03.2020 20:01) Смотрел. Интересний факт если подключить лед через резитор 100 ом к импольсному бп зарядки от мобили светит и не горит. но если подключить к трансформаторному бп лед накрилса. Почиму так происходит. арядка нокіа 5в 350ма транс после диодного моста и кондера 4.8 в скока а незнаю. |
0Спам
Для светодиода нужно 10-20 мА. Что там написано на блоке питания — неважно. Важно, что он на самом деле может выдать. А от мощности блока питания номинал резистора не зависит, за исключением того случая, что блок питания настолько слабый, что даже светодиод не тянет или напряжение сильно проседает. А так, возьмите блок питания, который может выдать 5В 100А, все равно для светодиода потребуется резистор 200 ом (или 100 ом, если светодиод помощнее). Закон Ома пока еще не отменили. |
9 Maestro (07.03.2021 11:42) Да, можно самый маленький. |
0Спам10 tolikrybakov01 (07.03.2021 12:23) а 1 ком можно взять резистор? тогда какое напряжение подавать? |
11 Maestro (07.03.2021 12:46) Можно. Тогда скинуть до 9В. |
0Спам12 lotgpsman (11.11.2021 16:10) А что база в воздухе висит? какая роль транзистора в таком случае? Схема мигать не будет! |
0Спам13 vzhik777 (11.11.2021 19:11) |
0Спам14 vzhik777 (11.11.2021 19:12) |
0Спам15 vzhik777 (11.11.2021 19:12) |
0Спам16 vzhik777 (11.11.2021 19:13) Вот вам транзистор. Чем сильнее дернешь за Базу, тем больше потечет из Эмиттера в Коллектор. Делов то! |
0Спам17 lotgpsman (15.11.2021 08:19) А переменка не указана на схеме! |
Источник: /radioskot.ru/index/86-231-5-1