Диодный мост

Диодный мост: что это такое и зачем он нужен?

Диодный мост? Это совсем не то, что Крымский. Это такой маленький диодный мостик, схема которого строится из небольших совсем электронных устройств — диодов. Их мы собираем даже своими руками. Да, соберите своими руками и увидите, что это легко и быстро, надо только знать, из чего и для чего. Он состоит из диодов.

Что такое диоды

Диоды — это электронные устройства с двумя электродами («ди» — два). Анод и катод.

Диод

Раньше, в эпоху стеклянных электронных вакуумных ламп, это была самая простая из ламп. В ней непосредственно около катода располагалась нить накаливания, как в лампочке. Катод от этого разогревался, и из него начинали выпрыгивать электроны все быстрее и быстрее.

А кроме напряжения накала к электродам было приложено рабочее напряжение. И если на катод подать минус, а на анод плюс, то электроны от катода начинают отталкиваться, а к аноду притягиваться. Так как этому процессу в вакууме ничто не мешает, через вакуум и побежит ток, пропорциональный приложенному напряжению.

А если поменять полюса — подать на анод минус, а на катод плюс, ток остановится. Потому что анод холодный, а к катоду теперь приложен положительный потенциал, который возвращает выброшенные накалом катода электроны обратно. Вот так и получился самый первый и самый простой нелинейный электрический элемент.

В одну сторону ток он пропускает, а в другую — нет.

Обратите внимание

Почти такая же картина и в полупроводниковых диодах. Только там нет вакуума, а твердая пластинка полупроводника имеет свойство не препятствовать движению электронов в одну сторону и запрещать их движение в противоположную.

Весь секрет в N-P-переходе полупроводника.

Полупроводниковый диод представляет собой пластинку, похожую на плоский кружочек (или квадратик) металла. Но это не металл, а две его стороны имеют чуть разные свойства.

Металлы характеризуется тем, что электроны в их кристаллической решетке почти не держатся, вылетают и болтаются между атомами кристалла по любому поводу, самая небольшая температура, заставляющая ядра атомов на своих местах слегка вибрировать, вышибает электроны напрочь и массово. А на этом месте что образуется? Знамо дело, дырка. Так называется атом, потерявший электрон.

И получается, что электроны хаотично мечутся по межатомному пространству металла, а дырки тоже мечутся — только уже по самой кристаллической решетке. Потому что если соседний атом «заметит» дырку, он очень просто легким толчком закинет в нее свой электрон. И это можно понять в обратном смысле: получилось, это дырка перескочила из того атома в этот.

И так дырки начинают жить тоже своей самостоятельной жизнью и блуждать как им взбредется. А встретится им электрон — может произойти рекомбинация, когда электрон запрыгнет в эту самую дырку. Ну и все, нашел свою судьбу.

Только свободных электронов в металле видимо-невидимо, и поэтому стоит приложить к проводнику напряжение — как тут же начнется уже более-менее упорядоченное движение электронов от минуса к плюсу, то есть электрический ток. Соответственно, и дырки побегут, наоборот, от плюса к минусу, то есть как раз так, как люди определили когда-то НАСТОЯЩИМ направлением тока. Определили, еще ничего не зная ни о свободных электронах, ни о дырках.

В полупроводниках картина очень тонкая. Он сам плохой проводник и никудышный изолятор. Потому они так и названы — полупроводники. В них тоже есть свободные электроны и дырки. Только их не так много, как в металлах, а равновесие электронов и дырок нарушают примеси в полупроводнике.

Атомы примесей становятся дополнительными источниками в одних случаях свободных электронов, в других — «свободных» дырок. Есть такие атомы, которые в одном случае прихватывают себе лишний электрон и не отпускают его (акцепторная примесь).

А на его месте в атоме полупроводника получается дырка и начинает бродить неприкаянно по кристаллической решетке.

Важно

А в другом случае атом примеси имеет свойство отдавать свой электрон (донорная примесь), ничего не прося взамен. И пойдет электрон лишний куда глаза глядят.

Первая проводимость названа дырочной — P (positive, положительная), вторая электронной — N (negative, отрицательная).

Но самое интересное, что два типа проводимости могут существовать в одном куске полупроводника. Вот той самой тонкой пластинки, похожей на металл. С одной стороны в нее внедряют донорную примесь, а с другой — акцепторную.

Очень просто: можно на основу из полупроводника — германия или кремния — с одной стороны нанести материал-акцептор, фосфор, мышьяк или сурьму. Температура плавления сурьмы чуть выше 980 ⁰С, а у полупроводников еще выше, около 1200–1400 ⁰С.

Атомы акцептора (чаще всего сурьмы, более остальных практичной в обращении) внедряются в кристаллическую решетку полупроводника, делая его полупроводником типа P. Другую сторону обрабатывают алюминием или индием — легкими и плавкими металлами.

Достаточно поместить капельку индия, просто капнуть с одной стороны при температуре плавления 430 ⁰С.

Вот и получился у нас знаменитый N-P переход, который ток пропускает в одну и другую стороны по-разному.

И правда, если представить ток как движение заряженных частиц, то в полупроводнике N-типа движутся электроны (их подавляюще больше). А в P-типа — дырки. Причем направление их движений противоположное.

Совет

Только если в металле они движутся одновременно и независимо — одни туда, другие сюда, то в полупроводнике все не так. В полупроводнике N-типа движутся, в основном, электроны, по полупроводнику P-типа ток создает движение дырок.

А вот в N-P переходе эти два вида токов встречаются.

На границе этих двух типов (границе между полупроводником с примесями одного типа и проводником с примесями другого) электроны вместо дальнейшего движения будут «находить свою судьбу», то есть встречаться с дырками и с ними производить рекомбинацию.

Такую зону счастливых электронных пар мы называем «зоной запрета», потому что при рекомбинации атомы примесей становятся ионами (в N-зоне положительные, а в P-зоне отрицательные), и они создают электрическую разность потенциалов, всегда направленную от N проводимости к P проводимости.

И вот теперь, если прикладывать напряжение к внешним контактам диода, и если полярность его совпадает с направлением этой разности потенциалов, то ток потечет через диод, а если противоположно ей, то нет.

Первое направление (когда к P приложен плюс, а к N минус) называется прямым, второе (когда на P подан минус, а на N плюс) — обратным.

Схема

Прямое направление диода делает его по работе похожим на обычное сопротивление, работающим по закону Ома.

А обратное дает нечто вроде разрыва в цепи, хотя при этом всегда сохраняется некоторый обратный ток, зависящий от других вещей — температуры, радиации.

Вот на таких приборах и строятся выпрямительные мосты.

Выпрямительные мосты

Если подавать на диод переменное электрическое напряжение, которое непрерывно изменяется от некоторого напряжения U+ > 0 до напряжения U–< 0, то наш диод начнет «срезать» все напряжения, которые для него будут «обратными».   

Работа диода

В случае обычного для наших сетей синусоидального сигнала в результате работы диода получается «полусинусоида» тока (или напряжения в нагрузке).

Синусоидальный сигнал

Весь ток и напряжение в сети нагрузки будет иметь положительное направление, но половина электроэнергии не будет «доходить» до адресата.

Обратите внимание

Чтобы использовать и вторую половину синусоиды, нужно, чтобы она не срезалась, а меняла знак на противоположный. Вот и получилась схема диодного моста.

Диодный мост: принцип работы

Уже лучше, но мост не является выпрямителем в полном смысле. Напряжение в нагрузку он дает не постоянное, а пульсирующее с двойной частотой.

Если нагрузкой сделаем лампу накаливания, то никаких пульсаций света можем и не заметить.

Лампа накаливания является прибором инерционным, в плане преобразования электричества в тепло и свет. То есть за 1/50 (при переменном напряжении) или за 1/100 (при пульсирующим напряжении от диодного моста) доли секунды ее нить накала не успевает остыть, как уже приходит очередной импульс. В этом случае диодный мостик такой схемы вполне подойдет.

Схема

В результате этого температура спирали во времени представляет собой кривую, сглаживающую кривую напряжения, выходящего из диодного моста. И чем спираль массивнее, тем более сглажена кривая ее температуры. В выпрямительных мостах сглаживание делается конденсатором, которые способны, подобно спирали лампы, накапливать энергию, а потом медленно ее отдавать.

Выпрямительный мост

Выпрямительный мост — это настолько отработанная, привычная и полезная схема, что для нее имеется общепринятое сокращенное графическое обозначение. А как сделать диодный мост — тут вообще все просто. Следует только разобраться с концами диодов — какие плюс и какие минус.

На входные два узелка подается переменное напряжение, поэтому к ним подходят как плюс диодов, так и минус: VD1 плюс, VD2 минус —на верхний, VD3 + и VD4 — на нижний. А выходные клеммы от моста получают уже знакопостоянное напряжение, поэтому их плюсы и минусы совпадают с +/- диодов.

Важно

VD2, VD4 припаяем плюсами на плюсовой выход, VD1, VD3 — минусами на минусовой. Вот и получился выпрямительный диодный мост.

Диодный мост

Такие диодные мосты присоединяют часто к обычному трансформатору от блоков питания, понижающему к 12 вольтам. Диоды в этом случае подойдут любые, лишь бы рабочий диапазон напряжений был немного больше, чем на 12 вольт. Скажем, вольт на 20–35. Особых требований нет, соединения низковольтные, для подключения достаточно обычной спайки.    

Схема

Трехфазный диодный мост

Однако делают диодные мосты и высоковольтные. Там все то же самое, только все элементы схемы рассчитываются на те номиналы напряжений, с которыми будет иметь дело диодный мост — с запасом, разумеется. Кроме того, можно сделать его и для трехфазного напряжения. И он оказывается сложнее однофазного не в три раза, а только в полтора.

Подключить диодный мост к трансформатору здесь нужно в трех точках, по одной на каждую фазу. Принципиальной разницы между спайкой диодного моста на три фазы и собранного под одну фазу нет.

Разобраться с концами здесь почти так же просто.

Здесь плюсы одних трех диодов и минусы других подключаются к выходам, после этого попарно спаиваются плюсы с минусами верхней и нижней тройки диодов, и в эти же три точки подаются фазы. Все, вы его собрали.

Источник: /domelectrik.ru/baza/komponenty/diodnyy-most

Диодный мост, принцип работы и схема

Диодный мост – это мостовая схема соединения диодов, для выпрямления переменного тока в постоянный.

Диодные мосты являются простейшими и самыми распространенными выпрямителями, их используют в радиотехнике, электронике, автомобилях и в других сферах, там, где требуется получение пульсирующего постоянного напряжения.

Для лучшего понимания принципа работы диодного моста, рассмотрим работу одного диода:

Диод как полупроводниковый элемент, имеет один p-n переход, что дает ему возможность проводить ток только в одном направлении. Ток через диод начинает проходить при подключении анода к положительному, а катода к отрицательному полюсу источника. В обратной ситуации диод запирается, и ток через него не протекает.

Схема и принцип работы диодного моста

На данной схеме 4 диода соединенных по мостовой схеме подключены к источнику переменного напряжения 220В. В качестве нагрузки подключен резистор Rн.

Переменное напряжение на входе меняется не только по мгновенному значению, но и по знаку.

При прохождении положительной полуволны (от 0 до π) к анодам диодов VD2 и VD4 приложено положительное напряжение относительно их катодов, что вызывает прохождение тока Iн через диоды и нагрузку Rн.

Читайте также:  Устройство газовой плиты

В этот момент диоды VD1 и VD3 заперты и не пропускают ток, так как напряжение положительной полуволны для них является обратным.

В момент, когда входное напряжение пересекает точку π, оно меняет свой знак. В этом случае диоды VD1 и VD3 начинают пропускать ток, так как к их анодам приложено положительное напряжение относительно катодов, а диоды VD2 и VD4 оказываются запертыми. Это продолжается до точки 2π, где переменное входное напряжение снова меняет свой знак и весь процесс повторяется заново.

Важно отметить, что ток Iн протекающий через нагрузку Rн, не изменяется по направлению, т.е. является постоянным.

Но если обратить внимание на график, то можно заметить, что напряжение на выходе является не постоянным, а пульсирующим. Соответственно, выходной ток, появляющийся от такого напряжения и протекающий через активную нагрузку, будет также – пульсирующим.

Данную пульсацию можно немного уменьшить с помощью параллельно включенного конденсатора к выходу диодного моста.

Совет

Напряжение на конденсаторе, согласно закону коммутации, не может измениться мгновенно, а значит в данном случае, выходное напряжение примет более сглаженную форму.

1 1 1 1 1 1 1 1 1 1 4.00 (4 Голоса)

Источник: /electroandi.ru/elektronika/vypryamiteli/diodnyj-most-printsip-raboty-i-skhema.html

Диодный мост – что это такое?

Как мы знаем, в наших розетках протекает переменный электрический ток с напряжением в 220 вольт. Но как быть если нам нужно запитать низковольтный приемник, которому требуется постоянный ток? Если с напряжением все понятно – нам поможет трансформатор, то как сделать из переменного тока постоянный – вопрос.

В этой ситуации нам на помощь приходит такое устройство как выпрямитель. Это устройство содержится почти во всех электронных приборах, которые работает на постоянном токе, от сварочных полуавтоматов, до блоков питания.

В статье мы рассмотрим классическую схему выпрямителя из четырех диодов, которая именуется выпрямительным диодным мостом.

Для чего нужен диодный мост

Как мы должны были понять, диодный мост нужен для того, чтобы сделать из переменного тока постоянный. Это устройство придумал немецкий ученый Леоц Гретц, второе название диодного моста – мостовая схема Гретца.

Принцип действия таков: на вход диодного моста подается переменный электрический ток, а на его выходах появляется постоянный пульсирующий ток. Частота пульсаций зависит от частоты переменного тока. Если взять стандартное значение частоты для наших широт (50 Гц), то частота пульсаций постоянного тока будет равна 100 Гц.

Для того, чтобы сгладить пульсации, ставиться конденсатор – это устройство будет полноценным выпрямителем. Схема, которая рассматривается в данной статье, применяется в двухфазной сети. Для трехфазной сети применяется другие схемы, которые не будут рассмотрены в этой статье.

Выполняется в виде четырех соединённых диодов или диодной сборки. Диодная сборка – это тот же диодный мост, только сделан в одном корпусе. У обоих вариантов исполнения есть свои плюсы и недостатки. Например, в случае неисправности одного из диодов, продеться заменить всю диодную сборку – это ее минус.

При подборе диодного моста или отдельных диодов для него, учитываются следующие характеристики:

  • Обратное напряжение диодов;
  • Обратный ток диодов;
  • Длительно допустимый ток;
  • Максимальная рабочая температура;
  • Рабочая частота (актуально для высокочастотных приборов).

Это основные параметры, по которым подбираются диоды для самостоятельной сборки или диодные мосты. Все зависит от нагрузки, которую вы хотите запитать, но будь то блок питания или зарядное устройство, лучше взять с запасом, нежели впритык. Это обезопасит ваше устройство.

Бывают ситуации, когда диодный мост может сильно нагреваться или даже сгореть. Это происходит из-за высокого тока, которые проходя по диодам нагревает их, либо из-за плохого охлаждения, особенно в мощных устройствах.

Для лучшего охлаждения и профилактики сгораний диодного моста, рекомендуется использовать радиаторы, которые будут эффективно рассеивать тепло.

Обратите внимание

Диоды тоже имеют свое сопротивление и на каждом из них падает напряжение. Для высоковольтных аппаратов – это не существенные потери, но для низковольтных приемников (до 12 вольт) такие потери будут существенны. В этой ситуации в место обычных диодов, в схеме применяется диоды Шоттки.

На выпрямителе из таких диодов будет низкое падение напряжения, приемлемое для низковольтной аппаратуры. Из-за особенностей диодов Шоттки, такие диодные мосты могут работать на сверхвысоких частотах.

Но будьте осторожны, при малейшем превышении обратного напряжения, такие диоды выходят из строя.

Схема диодного моста

Как мы выяснили выше, схема диодного моста состоит из четырех полупроводниковых диодов, соединенных по схеме Гретца. Такая схема еще называется двухполупериодным выпрямителем.

На принципиальных схемах диодный мост может обозначаться по-разному, либо как схема из четырех диодов, либо как один большой диод в ромбике. Суть его от этого не меняется, вот несколько примеров:

А вот так обозначается выпрямитель со сглаживающим конденсатором:

Как работает диодный мост

Принцип работы диодного моста достаточно прост. Переменный ток имеет две полуволны: положительную отрицательную. Каждое плечо (2 диода) выпрямляют свою полуволну, в то время как второе плечо блокирует протекание тока в другом направлении.

В результате выпрямляется два полупериода, а на выводах всегда неизменная полярность. Изображение работы График Подключить диодный мост не составит труда, ведь это схематично показано на всех УГО (это и есть схема подключения) этого устройства.

В случае с подключением диодной сборки, ее выводы обозначены соответственными обозначениями. Собрать диодный мост самостоятельно тоже проще простого. Если вы уже подобрали диоды, то достаточно припаять их концы соответственно схеме.

Но перед этим не поленитесь проверить диоды на исправность и не перепутайте их полярность. Обычно катод и анод указаны на корпусе диодов.

Если остались вопросы, то рекомендуем к просмотру видео, чтобы найти ответы на оставшиеся вопросы.

Вывод

В статье мы рассмотрели такое классическое электронное устройство как диодный мост. Изучили его схему и разобрались в принципе работы. Я, как автор этой статьи, надеюсь, что она будет понятна даже чайнику и эти знания помогут вам в освоении радиоэлектроники.

Источник: /ElectroInfo.net/4-diodnyj-most.html

Диодный мост

Словосочетание «диодный мост» образуется от слова «диод». Следовательно, диодный мост  должен состоять из диодов, но они должны соединятся с друг другом в определенной последовательности. Почему это имеет важное значение мы как раз и поговорим в этой статье.

Обозначение на схеме

Диодный мост на схемах выглядит подобным образом:

Иногда в схемах его обозначают  еще так:

Как мы с вами видим, схема состоит из четырех диодов.

Для того, чтобы она работала корректно, мы должны правильно соединить диоды и правильно подать на них переменное напряжение. Слева мы видим два значка «~».

  На эти два вывода мы подаем переменное напряжение, а снимаем постоянное напряжение с других двух выводов обозначенных значками «+» и «-«. Диодный мост также называют диодным выпрямителем.

Принцип работы

Для выпрямления переменного напряжения в постоянное можно использовать один диод для выпрямления, но не желательно.

Давайте рассмотрим  рисунок, как все это будет выглядеть:

Диод срезает отрицательную полуволну переменного напряжения, оставляя только положительную, что мы и видим на рисунке выше.

Вся прелесть этой немудреной схемы состоит в том, что мы получаем постоянное напряжение из переменного. Проблема кроется в том, что мы теряем половину мощности переменного напряжения. Ее срезает диод.

Важно

Чтобы исправить эту ситуацию, была придумана великими умами схема диодного моста. Диодный мост «переворачивает» отрицательную полуволну, превращая ее в положительную полуволну, тем самым у нас сохраняется мощность.

На выходе  диодного моста появляется постоянное пульсирующее напряжение с частой в 100 Герц. Это в два раза больше, чем частота сети.

Практические опыты

Для начала возьмем простой диод.

Катод можно легко узнать по серебристой полоске. Почти все производители показывают катод полоской или точкой.

Чтобы наши опыты были безопасными, я взял понижающий трансформатор, который из 220В делает 12В.

На первичную обмотку цепляем 220 Вольт, со вторичной обмотки снимаем 12 Вольт. Мультиметр показал чуть больше, так как на вторичной обмотке нет никакой нагрузки. Трансформатор работает на  так называемом «холостом ходу».

Давайте же рассмотрим осциллограмму, которая идет со вторичной обмотки трансформатора. Максимальную амплитуду напряжения  нетрудно посчитать. Если не помните как это делать, можно прочитать статью Осциллограф. Основы эксплуатации.

3,3х5=16.5В — это максимальное значение напряжения.  А если разделить максимальное амплитудное значение на корень из двух, то получим где то 11,8 Вольт. Это и есть действующее значение напряжения. Осциллограф не врет, все ОК.

Еще раз повторюсь, можно было использовать и 220 Вольт, но 220 Вольт  — это не шутки, поэтому я и понизил переменное напряжение.

Припаяем к одному концу  вторичной обмотки трансформатора наш диод.

Цепляемся снова щупами осциллографа

Смотрим на осциллограмму

А где же нижняя часть изображения? Ее срезал диод. Он оставил только верхнюю часть, то есть ту, которая положительная.

Находим еще  три таких диода и спаиваем диодный мост.

Цепляемся ко вторичной обмотке трансформатора по схеме диодного моста.

Совет

С двух других  концов снимаем постоянное пульсирующее напряжение щупом осциллографа и смотрим на осциллограмму

Вот, теперь порядок.

Виды диодных мостов

Чтобы не заморачиваться с диодами, разработчики все четыре диода вместили в один корпус. В результате, получился очень компактный и удобный радиоэлемент — диодный мост. Думаю, вы догадаетесь, где импортный, а где советский ))).

Например, на советском диодном мосте показаны контакты,  на которые  нужно подавать переменное напряжение значком » ~ «, а  контакты, с которых  надо снимать постоянное пульсирующее напряжение значком «+» и «-«.

Существует множество видов диодных мостов в разных корпусах

Есть даже автомобильный диодный мост

Существует также диодный мост для трехфазного напряжения. Он собирается по так называемой схеме Ларионова и состоит из 6 диодов:

В основном трехфазные диодные мосты используются в силовой электронике.

Как вы могли заметить, такой трехфазный выпрямитель имеет пять выводов. Три вывода на фазы и с двух других выводов мы будем снимать постоянное пульсирующее напряжение.

Как проверить диодный мост

1) Первый способ самый простой. Диодный мост проверяется целостностью всех его диодов. Для этого прозваниваем каждый диод мультиметром и смотрим целостность каждого диода. Как это сделать, читаем эту статью.

2) Второй способ 100%-ый. Но для этого потребуется осциллограф, ЛАТР или понижающий трансформатор. Давайте проверим импортный диодный мост. Для этого цепляем два его контакта к переменному напряжению со значками «~», а с двух других контактов, с «+» и «-»  снимаем показания с помощью осциллографа.

Смотрим осциллограмму

Значит, импортный диодный мост исправен.

Резюме

Диодный мост (выпрямитель) используется для преобразования переменного тока в постоянный.

Диодный мост используется почти во всей радиоаппаратуре, которая «кушает» напряжение из переменной сети, будь то простой телевизор или даже зарядка от сотового телефона.

Источник: /RusElectronic.com/diodnyj-most/

Диодный мост: назначение и изготовление своими руками

Несмотря на то что в бытовых розетках, как известно, присутствует переменное напряжение величиной 220 В, подавляющее большинство электронных приборов требует намного меньших значений. Более того, это питание должно осуществляться не переменным, а постоянным током. Именно поэтому практически каждый бытовой прибор имеет в составе своей схемы выпрямитель — диодный мост.

Читайте также:  Самый безопасный обогреватель

Постоянный и переменный ток

Из учебного курса физики все знают, что электрический ток подразумевает протекание электрического заряда из одного проводника в другой.

В отличие от постоянного тока, который действительно идет в одном направлении (от минуса к плюсу), переменный течет сначала в одну сторону, а затем — в другую.

Если подключить к розетке осциллограф, можно получить схематическое изображение такого движения тока.

На рисунке представлена осциллограмма переменного тока, где по оси абсцисс показано время, а по оси ординат — напряжение. Из графика хорошо видно, что напряжение плавно нарастает до величины 220 В, потом уменьшается до нуля и нарастает до той же величины, но с противоположным знаком. Иными словами, напряжение в розетке постоянно меняет знак со скоростью 50 раз в секунду.

Для сравнения можно подключить щупы осциллографа к источнику постоянного тока. В качестве него могут использоваться клеммы батарейки. В этом случае картина будет несколько иная.

Осциллограмма постоянного тока, показанная на изображении, наглядно демонстрирует, как на протяжении всего времени напряжение на клеммах имеет постоянную величину. При замыкании цепи ток будет течь в одну сторону.

Особенности видов напряжения

Возникает закономерный вопрос о том, зачем в розетках используется переменный ток, если подавляющее большинство электронной аппаратуры питается постоянным током.

Дело в том, что для питания узлов той или иной аппаратуры требуются напряжения разной величины. Процессор компьютера, например, питается 3 В, а мобильный телефон требует для своей зарядки целых 5 В.

Усилителю музыкального центра нужно уже около 25 В.

Постоянное напряжение достаточно сложно трансформировать из одной величины в другую, а вот переменное — запросто. Для этого служат, к примеру, трансформаторы.

Обратите внимание

Некоторые важные силовые узлы, такие как двигатели, все же нуждаются в переменном напряжении.

Поэтому промышленные генераторы, питающие бытовые розетки, вырабатывают его до общепринятой величины (например, 220 В), а каждый прибор уже на месте получает из него то, что ему требуется.

Выпрямление электроэнергии

До конца XIX века преобразование переменного напряжения в постоянное было проблемой. С изобретением диода — сначала вакуумного, а позже и полупроводникового — ситуация в корне изменилась.

Благодаря своим уникальным свойствам, диод отлично различает полярность и позволяет легко сортировать токи с нужным направлением.

Сначала для этих целей использовались отдельные диоды, позже появились диодные мосты, обеспечивающие высокое качество выпрямления.

Источник: /pochini.guru/sovety-mastera/diodnyiy-most

Принцип работы и применение диодного моста

11.05.2023

Диодный мост — электрическая схема, предназначенная для преобразования переменного тока в постоянный импульсный.

Изобретение схемы в 1897 году приписывается немецкому физику Лео Гретцу, хотя англоязычные источники утверждают, что ещё в 1895 году диодный мост создал «польский Эдисон» — электротехник Карол Поллак.

Наибольшее распространение схема получила после широкого внедрения полупроводниковых диодов.

Принцип работы

Принцип действия этого типа выпрямительного устройства основан на свойстве полупроводникового диода пропускать электроток в одном направлении и не пропускать в другом. Так, если мы правильно подключим плюс и минус, через устройство пойдёт ток. Поменяем плюс и минус местами — движения не будет.

Переменный ток отличается тем, что в течение одного полупериода он движется в одном направлении, а в течение второго — в противоположном. И если просто включить в цепь один диод, то он будет работать «с пользой» только в течение одного полупериода. А если соединить диоды так, чтобы использовать оба полупериода? Благодаря этой идее и появились мостовые выпрямители.

Схема диодного моста—выпрямителя довольно проста и может быть собрана своими руками. Он состоит из четырёх диодов, соединённых в виде квадрата. На два противолежащих угла подаётся переменный ток от генератора. С двух других противолежащих углов снимается постоянный.

В первый полупериод открываются два диода, выпрямляя полуволну переменного тока. Во второй полупериод открываются два других диода, преобразуя вторую полуволну. В итоге на выходе получается постоянный ток с частотой импульсов в два раза выше, чем частота переменного тока.

Преимущества и недостатки схемы

  1. Для использования выпрямленного тока импульсная составляющая должна быть сглажена с помощью фильтра—конденсатора. Чем выше частота, тем лучше проходит процесс сглаживания.

    Поэтому удвоение частоты в мостовой схеме является преимуществом.

  2. Двухполупериодное выпрямление позволяет лучше использовать мощность питающего трансформатора и за счёт этого уменьшить его размеры.

Недостатки.

  1. Удвоенное падение напряжения по сравнению с однополупериодным выпрямителем.
  2. Удваиваются потери мощности на рассеяние тепла. Для снижения потерь в мощных низковольтных схемах используются диоды Шоттки с малым падением напряжения.
  3. При выходе из строя одного из диодов моста выпрямительное устройство будет работать, однако его параметры будут отличаться от нормальных. Это, в свою очередь, может негативно сказаться на работе систем, запитанных от выпрямителя.

Использование и применение

Сегодня мосты широко применяются во всех случаях, когда используется постоянный ток — от мобильных телефонов, до автомобилей. Промышленность выпускает большое количество выпрямительных устройств, выполненных по мостовой схеме. Поэтому подобрать нужный мостик не составляет труда при условии ясного понимания, зачем он приобретается и какие функции будет выполнять.

Конструктивно выпрямители могут быть выполнены на отдельных диодах либо в виде единого блока. В первом случае при повреждении одного из диодов можно произвести замену. Для этого надо знать, как прозвонить диодный мост.

Проверка проводится в виде последовательного перебора всех диодов на пропускание тока в прямом и обратном направлении.

Важно

В качестве индикатора можно использовать как обычную лампочку, так и прибор, измеряющий силу тока или сопротивление.

Несмотря на доступность фабричных выпрямителей, многих интересует, как сделать диодный мост на 12 вольт самостоятельно.

Дело в том, что 12 вольт — наиболее распространённое напряжение для питания многих устройств, например, персональных компьютеров. А стремление собрать выпрямитель самостоятельно зачастую вполне оправданно.

Ведь большинство недорогих блоков питания, которые можно приобрести, не соответствуют заявленным параметрам по току и мощности.

Конечно, самодельный блок вряд ли будет выглядеть как фабричный, зато позволит произвести подключение устройств в полном соответствии с нужными параметрами.

Несмотря на то что выпрямительный мостик не является сложной схемой, его сборка требует не только умения спаять детали, но и правильно рассчитать их параметры. Прежде всего потребуется силовой трансформатор, понижающий напряжение до 10 вольт.

Дело в том, что выходное напряжение моста выше входного примерно на 18 процентов.

Поэтому если подать на выпрямитель 12 вольт переменного тока, то получим 14−15 вольт постоянного тока, а это может быть опасным для устройств, рассчитанных на 12 вольт.

Далее, нужно подобрать диоды, рассчитанные на двукратный запас по току. Так, если предполагается, что выпрямитель должен обеспечить ток силой в 5 ампер, то диоды должны выдерживать не менее 10 ампер. Двукратный запас должен иметь и конденсатор, но по напряжению.

Совет

А для того чтобы лучше сглаживать выпрямленный ток, он должен иметь большую ёмкость. Поэтому оптимальным является электролитический конденсатор, рассчитанный на напряжение 25 вольт, ёмкостью от 2000 микрофарад.

Все эти детали остаётся правильно соединить и проверить выходные параметры с помощью приборов.

Источник: /ObInstrumentah.info/printsip-raboty-i-primenenie-diodnogo-mosta/

Устройство и работа выпрямительного диода. Диодный мост

Здравствуйте уважаемые читатели сайта sesaga.ru. Продолжаем знакомиться с полупроводниковыми диодами. В предыдущей части статьи мы с Вами разобрались с принципом работы диода, рассмотрели его вольт-амперную характеристику и выяснили, что такое пробой p-n перехода.
В этой части мы рассмотрим устройство и работу выпрямительных диодов.

Выпрямительный диод – это полупроводниковый диод, предназначенный для преобразования переменного тока в постоянный.

Однако, это далеко не полная область применения выпрямительных диодов: они широко используются в цепях управления и коммутации, в схемах умножения напряжения, во всех сильноточных цепях, где не предъявляется жестких требований к временным и частотным параметрам электрического сигнала.

Общие характеристики выпрямительных диодов

В зависимости от значения максимально допустимого прямого тока выпрямительные диоды разделяются на диоды малой, средней и большой мощности:

малой мощности рассчитаны для выпрямления прямого тока до 300mA;
средней мощности – от 300mA до 10А;
большой мощности — более 10А.

По типу применяемого материала они делятся на германиевые и кремниевые, но, на сегодняшний день наибольшее применение получили кремниевые выпрямительные диоды ввиду своих физических свойств.

Кремниевые диоды, по сравнению с германиевыми, имеют во много раз меньшие обратные токи при одинаковом напряжении, что позволяет получать диоды с очень высокой величиной допустимого обратного напряжения, которое может достигать 1000 – 1500В, тогда как у германиевых диодов оно находится в пределах 100 – 400В.

Работоспособность кремниевых диодов сохраняется при температурах от -60 до +(125 — 150)º С, а германиевых – лишь от -60 до +(70 – 85)º С. Это связано с тем, что при температурах выше 85º С образование электронно-дырочных пар становится столь значительным, что происходит резкое увеличение обратного тока и эффективность работы выпрямителя падает.

Технология изготовления и конструкция выпрямительных диодов

Конструкция выпрямительных диодов представляет собой одну пластину кристалла полупроводника, в объеме которой созданы две области разной проводимости, поэтому такие диоды называют плоскостными.

Технология изготовления таких диодов заключается в следующем:
на поверхность кристалла полупроводника с электропроводностью n-типа расплавляют алюминий, индий или бор, а на поверхность кристалла с электропроводностью p-типа расплавляют фосфор.

Под действием высокой температуры эти вещества крепко сплавляются с кристаллом полупроводника.

Обратите внимание

При этом атомы этих веществ проникают (диффундируют) в толщу кристалла, образуя в нем область с преобладанием электронной или дырочной электропроводностью.

Таким образом получается полупроводниковый прибор с двумя областями различного типа электропроводности — а между ними p-n переход. Большинство распространенных плоскостных кремниевых и германиевых диодов изготавливают именно таким способом.

Для защиты от внешних воздействий и обеспечения надежного теплоотвода кристалл с p-n переходом монтируют в корпусе.

Диоды малой мощности изготавливают в пластмассовом корпусе с гибкими внешними выводами, диоды средней мощности – в металлостеклянном корпусе с жесткими внешними выводами, а диоды большой мощности – в металлостеклянном или металлокерамическом корпусе, т.е.

со стеклянным или керамическим изолятором. Пример выпрямительных диодов германиевого (малой мощности) и кремниевого (средней мощности) показан на рисунке ниже.

Кристаллы кремния или германия (3) с p-n переходом (4) припаиваются к кристаллодержателю (2), являющемуся одновременно основанием корпуса. К кристаллодержателю приваривается корпус (7) со стеклянным изолятором (6), через который проходит вывод одного из электродов (5).

Маломощные диоды, обладающие относительно малыми габаритами и весом, имеют гибкие выводы (1) с помощью которых они монтируются в схемах.

У диодов средней мощности и мощных, рассчитанных на значительные токи, выводы (1) значительно мощнее.

Нижняя часть таких диодов представляет собой массивное теплоотводящее основание с винтом и плоской внешней поверхностью, предназначенное для обеспечения надежного теплового контакта с внешним теплоотводом (радиатором).

Электрические параметры выпрямительных диодов

У каждого типа диодов есть свои рабочие и предельно допустимые параметры, согласно которым их выбирают для работы в той или иной схеме:

Iобр – постоянный обратный ток, мкА;
Uпр – постоянное прямое напряжение, В;
Iпр max – максимально допустимый прямой ток, А;
Uобр max – максимально допустимое обратное напряжение, В;
Р max – максимально допустимая мощность, рассеиваемая на диоде;
Рабочая частота, кГц;
Рабочая температура, С.

Здесь приведены далеко не все параметры диодов, но, как правило, если надо найти замену, то этих параметров хватает.

Схема простого выпрямителя переменного тока на одном диоде

Разберем схему работы простейшего выпрямителя, которая изображена на рисунке:

На вход выпрямителя подадим сетевое переменное напряжение, в котором положительные полупериоды выделены красным цветом, а отрицательные – синим. К выходу выпрямителя подключим нагрузку (), а функцию выпрямляющего элемента будет выполнять диод (VD).

При положительных полупериодах напряжения, поступающих на анод диода диод открывается. В эти моменты времени через диод, а значит, и через нагрузку (), питающуюся от выпрямителя, течет прямой ток диода Iпр (на правом графике волна полупериода показана красным цветом).

При отрицательных полупериодах напряжения, поступающих на анод диода диод закрывается, и во всей цепи будет протекать незначительный обратный ток диода (Iобр). Здесь, диод как бы отсекает отрицательную полуволну переменного тока (на правом графике такая полуволна показана синей пунктирной линией).

Важно

В итоге получается, что через нагрузку (), подключенную к сети через диод (VD), течет уже не переменный, поскольку этот ток протекает только в положительные полупериоды, а пульсирующий ток – ток одного направления. Это и есть выпрямление переменного тока.

Но таким напряжением можно питать лишь маломощную нагрузку, питающуюся от сети переменного тока и не предъявляющую к питанию особых требований, например, лампу накаливания.

Напряжение через лампу будет проходить только во время положительных полуволн (импульсов), поэтому лампа будет слабо мерцать с частотой 50 Гц.

Однако, за счет тепловой инертности нить не будет успевать остывать в промежутках между импульсами, и поэтому мерцание будет слабо заметным.

Если же запитать таким напряжением приемник или усилитель мощности, то в громкоговорителе или колонках мы будем слышать гул низкого тона с частотой 50 Гц, называемый фоном переменного тока. Это будет происходить потому, что пульсирующий ток, проходя через нагрузку, создает в ней пульсирующее напряжение, которое и является источником фона.

Этот недостаток можно частично устранить, если параллельно нагрузке подключить фильтрующий электролитический конденсатор (Cф) большой емкости.

Заряжаясь импульсами тока во время положительных полупериодов, конденсатор () во время отрицательных полупериодов разряжается через нагрузку ().

Если конденсатор будет достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться, а значит, на нагрузке () будет непрерывно поддерживаться ток как во время положительных, так и во время отрицательных полупериодов.

Ток, поддерживаемый за счет зарядки конденсатора, показан на правом графике сплошной волнистой красной линией.

Но и таким, несколько сглаженным током тоже нельзя питать приемник или усилитель потому, что они будут «фонить», так как уровень пульсаций (Uпульс) пока еще очень ощутим.

В выпрямителе, с работой которого мы познакомились, полезно используется энергия только половины волн переменного тока, поэтому на нем теряется больше половины входного напряжения и потому такое выпрямление переменного тока называют однополупериодным, а выпрямители – однополупериодными выпрямителями. Эти недостатки устранены в выпрямителях с использованием диодного моста.

Диодный мост

Диодный мост – это небольшая схема, составленная из 4-х диодов и предназначенная для преобразования переменного тока в постоянный.

В отличие от однополупериодного выпрямителя, состоящего из одного диода и пропускающего ток только во время положительного полупериода, мостовая схема позволяет пропускать ток в течение каждого полупериода.

Диодные мосты изготавливают в виде небольших сборок заключенных в пластмассовый корпус.

Совет

Из корпуса сборки выходят четыре вывода напротив которых расположены знаки «+», «» или «~», указывающие, где у моста вход, а где выход. Но не обязательно диодные мосты можно встретить в виде такой сборки, их также собирают включением четырех диодов прямо на печатной плате, что очень удобно.

Например. Вышел из строя один из диодов моста, если будет стоять сборка, то ее смело выкидываем, а если мост будет собран из четырех диодов прямо на плате — меняем неисправный диод и все готово.

На принципиальных схемах диодный мост обозначают включением четырех диодов в мостовую схему, как показано в левой части нижнего рисунка: здесь, диоды являются как бы плечами выпрямительного моста.

Такое графическое обозначение моста можно встретить еще в старых журналах по радиотехнике.

Однако, на сегодняшний день, в основном, диодный мост обозначают в виде ромба, внутри которого расположен значок диода, указывающий только на полярность выходного напряжения.

Теперь рассмотрим работу диодного моста на примере низковольтного выпрямителя. В таком выпрямителе, с использованием четырех диодов, во время каждой полуволны работают поочередно два диода противоположных плеч моста, включенных между собой последовательно, но встречно по отношению ко второй паре диодов.

Со вторичной обмотки трансформатора переменное напряжение поступает на вход диодного моста.

Когда на верхнем (по схеме) выводе вторичной обмотки возникает положительный полупериод напряжения, ток идет через диод VD3, нагрузку , диод VD2 и к нижнему выводу вторичной обмотки (см. график а). Диоды VD1 и VD4 в этот момент закрыты и через них ток не идет.

В течение другого полупериода переменного напряжения, когда плюс на нижнем (по схеме) выводе вторичной обмотки, ток идет через диод VD4, нагрузку , диод VD1 и к верхнему выводу вторичной обмотки (см. график б). В этот момент диоды VD2 и VD3 закрыты и ток через себя не пропускают.

Обратите внимание

В результате мы видим, что меняются знаки напряжения на вторичной обмотке трансформатора, а через нагрузку выпрямителя идет ток одного направления (см. график в). В таком выпрямителе полезно используются оба полупериода переменного тока, поэтому подобные выпрямители называют двухполупериодными.

И в заключении отметим, что работа двухполупериодного выпрямителя по сравнению с однопериодным получается намного эффективней:

1. Удвоилась частота пульсаций выпрямленного тока;
2. Уменьшились провалы между импульсами, что облегчило задачу сглаживания пульсаций на выходе выпрямителя;
3. Среднее значение напряжения постоянного тока примерно равно переменному напряжению, действующему во вторичной обмотке трансформатора.

А если такой выпрямитель дополнить фильтрующим электролитическим конденсатором, то им уже смело можно запитывать радиолюбительскую конструкцию.

Ну вот, мы с Вами практически и закончили изучать диоды. Конечно, в этих статьях дано далеко не все, а только основные понятия, но этих знаний Вам уже будет достаточно, чтобы собрать свою радиолюбительскую конструкцию для дома, в которой используются полупроводниковые диоды.

А в качестве дополнительной информации посмотрите видеоролик, в котором рассказывается, как проверить диодный мост мультиметром.

Удачи!

Источник:

1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Горюнов Н.Н., Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.

3. Пасынков В.В., Чиркин Л.К — Полупроводниковые приборы: Учеб. для вузов по спец. «Полупроводники и диэлектрики» и «Полупроводниковые и микроэлектронные приборы» — 4-е изд. перераб. и доп. 1987г.

Источник: /sesaga.ru/ustrojstvo-i-rabota-vypryamitelnogo-dioda-diodnyj-most.html

Диодный мост: схема и назначение

Главная > Теория > Диодный мост: схема и назначение

Всем известно, что в бытовых сетях действует переменное электрическое напряжение с амплитудой 220 Вольт. Однако отдельные образцы современных электронных устройств (ваш мобильный, например) нуждаются в постоянном или выпрямленном напряжении. Понизить его до нужной величины поможет трансформатор, а для выпрямления переменной составляющей обязательно нужен диодный мост (фото ниже).

Рассматриваемые здесь выпрямительные устройства входят в состав большинства электронных приборов, которым для нормальной работы требуется постоянный ток (начиная от сварочных агрегатов и кончая миниатюрными блоками питания).

В данном обзоре представлено подробное описание схемы и принципа работы классического выпрямительного диодного моста. Также в нем будет рассмотрен вопрос, касающийся того, как сделать диодный мост своими руками.

Состав выпрямительного модуля

Всем, кто хотел бы более подробно ознакомиться с тем, что такое выпрямитель, советуем сделать небольшой исторический экскурс. Начнем с того, что прародителем выпрямительного моста считается изобретенная немецким ученым Л. Гретцем схема, собираемая на основе 4-х элементов (диодные сборки).

Обратите внимание! Эти устройства более известны под профессиональным названием «мостики Гретца» или двухполупериодный выпрямитель.

Такие сборки из четырех диодов со временем получили название мостовых схем, которые стали использоваться в качестве универсальных выпрямительных модулей.

Важно

Классический диодный мост схема которого представлена ниже, содержит в своем составе включенные определенным образом выпрямительные диоды.

Из приведенного выше рисунка видно, что в мостовую схему входят четыре полупроводниковых элемента (диода), порядок соединения которых соответствует встречно-параллельному принципу. Одна пара этих приборов включена в проводящем направлении, а другая – имеет обратное включение.

Принцип действия

Схема стабилизатора напряжения 220в своими руками

Чтобы понять, как работает диодный мост, сначала ознакомимся с самой сутью эффекта выпрямления переменных напряжений.

Принцип действия классического выпрямительного моста на основе четырех диодов состоит в следующем:

  • При поступлении положительной волны сетевого напряжения на плюсовой вывод диода, подключенного к нагрузке, через нее проходит токовый сигнал той же полярности;
  • Одновременно с этим через другой диод из пары в мостике, подключение которого обратно первому, ток не проходит, так как его переход закрыт противоположным по знаку потенциалом;
  • Зато через него в свое время проходит полуволна обратной полярности, формирующая на выходе импульс тока того же направления, что и в первом случае.

Можно сказать, что для каждой полуволны входного напряжения предназначается свой диод, формирующий (после того, как подключить его к нагрузке) ток одного и того же направления.

Согласно теории электротехники наблюдаемый при том эффект означает его выпрямление.

Рассмотренный выше принцип работы диодного моста позволяет сделать следующие выводы:

  • В результате описанного процесса на выходе выпрямителя формируются токовые полуволны, имеющие одну и ту же положительную полярность (рисунок ниже);

Выпрямление в диодном мостике

  • Если посмотреть осциллографом сигнал на нагрузке мостика, можно увидеть пульсирующий постоянный ток в виде повторяющихся с частотой 100 Гц полуволн одной полярности;
  • Это значение (100 Гц) получается за счет удвоения сетевой частоты 50 Гц на выходе диодного выпрямителя;
  • Удвоение частоты объясняется тем, что каждую полуволну входного сигнала обрабатывает «свой» диод (точнее – их пара).

Дополнительная информация. После фильтрации получившихся после выпрямления пульсаций (она осуществляется посредством электролитических конденсаторов) на нагрузке получается выпрямленное напряжение.

Иногда с целью фиксации его наличия на выходе схемы последняя дополняется светодиодной индикацией. При загорании включенного через ограничивающий резистор светодиода можно быть уверенным в том, что на выходе появился постоянный потенциал.

Для трехфазной питающей линии должны использоваться специальные типы мостовых схем, выбираемых и включаемых с учетом особенностей энергоснабжения силовых установок. Всех желающих ознакомиться с тем, как работает трехфазный выпрямительный мост, отсылаем по следующему адресу /hardelectronics.ru/shema-diodnogo-mosta.html.

Самостоятельное изготовление моста

Перед тем, как спаять диодный мостик, обязательно проверьте исправность каждого из входящих в его состав диода. Также обращаем внимание на то, что он может быть собран из отдельных (дискретных) элементов или взят в виде цельной корпусной сборки, имеющей четыре выводных контакта.

У каждого из этих вариантов исполнения мостика имеются свои плюсы и минусы.

Важно! В случае выхода из строя одного диода в составе монолитной сборки менять придется всю ее целиком (несмотря на то, что три оставшихся элемента могут быть исправными).

Зато такой модуль очень удобен при пайке выпрямительной схемы, когда нужно подключить диодный мост к источнику переменного напряжения с одной стороны и к нагрузке – с другой.

В ситуации, когда собираем диодный мост своими руками из дискретных элементов, всегда имеется возможность заменить каждый из них независимо от остальных. Но при данном подходе усложняется сам процесс изготовления, для чего придется паять все четыре его составных элемента.

По завершении самостоятельной сборки выпрямительного изделия останется лишь подсоединить диодный мост к трансформатору или к иному источнику, от которого поступает переменное напряжение.

В заключительной части обзора, посвященного тому, как работает схема диодного моста, обратим внимание на то, что при его самостоятельной сборке следует изучить параметры входящих в его состав элементов. Знание этих данных позволит правильно рассчитать допустимые токи нагрузки, а также быть уверенным в том, что диодная сборка не выйдет из строя.

Видео

Антенна GPS: характеристики и назначение

Источник: /elquanta.ru/teoriya/diodnyjj-most-skhema-i-naznachenie.html

Ссылка на основную публикацию