Сила тока. Амперметр — урок. Физика, 8 класс
В процессе своего движения вдоль проводника заряженные частицы (в металлах это электроны) переносят некоторый заряд. Чем больше заряженных частиц, чем быстрее они движутся, тем больший заряд будет ими перенесён за одно и то же время.
Электрический заряд, проходящий через поперечное сечение проводника за 1 секунду, определяет силу тока в цепи.
Сила тока ((I)) — скалярная величина, равная отношению заряда ((q)), прошедшего через поперечное сечение проводника, к промежутку времени ((t)), в течение которого шёл ток.
I=qt, где (I) — сила тока, (q) — заряд, (t) — время.
Единица измерения силы тока в системе СИ — ([I] = 1 A) (ампер).
В 1948 г. было предложено в основу определения единицы силы тока положить явление взаимодействия двух проводников с током:
при прохождении тока по двум параллельным проводникам в одном направлении проводники притягиваются, а при прохождении тока по этим же проводникам в противоположных направлениях — отталкиваются.
За единицу силы тока (1 A) принимают силу тока, при которой два параллельных проводника длиной (1) м, расположенные на расстоянии (1) м друг от друга в вакууме, взаимодействуют с силой (0,0000002)(H).
Единица силы тока называется ампером ((A)) в честь французского учёного А.М. Ампера.
Андре-Мари Ампер(1775 — 1836) |
А.М. Ампер ввёл такие термины, как электростатика, электродинамика, соленоид, ЭДС, напряжение, гальванометр, электрический ток и т.д.
Ампер — довольно большая сила тока. Например, в электрической сети квартиры через включённую (100) Вт лампочку накаливания проходит ток с силой, приблизительно равной (0,5A). Ток в электрическом обогревателе может достигать (10A), а для работы карманного микрокалькулятора достаточно (0,001A).
Помимо ампера на практике часто применяются и другие (кратные и дольные) единицы силы тока, например, миллиампер (мА) и микроампер (мкА):
(1 мA = 0,001 A), (1 мкA = 0,000001 A), (1 кA =1000 A).
То есть (1 A = 1000 мA), (1 A = 1000000 мкA), (1 A = 0,001 кA).
Если электроны перемещаются в одном направлении, т.е. — от одного полюса источника тока к другому, то такой ток называют постоянным.
Переменным называется ток, сила и направление которого периодически изменяются.
В бытовых электросетях используют переменный ток напряжением (220) В и частотой (50) Гц. Это означает, что ток за (1) секунду (50) раз движется в одном направлении и (50) раз — в другом. У источников переменного тока нет полюсов.
У многих приборов имеется блок питания, который преобразует переменный ток в постоянный (у телевизора, компьютера и т.д.).
Силу тока измеряют амперметром. В электрической цепи он обозначается так:
Обрати внимание!
Амперметр включают в цепь последовательно с тем прибором, силу тока в котором нужно измерить. Амперметр нельзя подсоединять к источнику тока, если в цепь не подключён потребитель!
Измеряемая сила тока не должна превышать максимально допустимую силу тока для измерения амперметром. Поэтому существуют различные амперметры.
Микроамперметр | Миллиамперметр |
Амперметр | Килоамперметр |
Обрати внимание!
Различают амперметры для измерения силы постоянного тока и силы переменного тока.
Их можно различить по обозначениям:
- «~» означает, что амперметр предназначен для измерения силы переменного тока;
- «—» означает, что амперметр предназначен для измерения силы постоянного тока.
Можно обратить внимание на клеммы прибора. Если указана полярность («(+)» и «(-)»), то это прибор для измерения постоянного тока.
Иногда используют буквы (AC/DC). В переводе с английского (AC) (alternating current) — переменный ток, а (DC) (direct current) — постоянный ток.
Для измерения силы постоянного тока | Для измерения силы переменного тока |
Для измерения силы тока можно использовать и мультиметр. Перед измерением необходимо прочитать инструкцию, чтобы правильно подключить прибор.
Обрати внимание!
Включая амперметр в цепь постоянного тока, необходимо соблюдать полярность (см. рисунок): провод, который идёт от положительного полюса источника тока, нужно соединять с клеммой амперметра со знаком «+»; провод, который идёт от отрицательного полюса источника тока, нужно соединять с клеммой амперметра со знаком «-».
Если полярность на источнике тока не указана, следует помнить, что длинная линия соответствует плюсу, а короткая — минусу.
В цепь переменного тока включается амперметр для измерения переменного тока. Он полярности не имеет.
Обрати внимание!
В цепи, состоящей из источника тока и ряда проводников, соединённых так, что конец одного проводника соединяется с началом другого, сила тока во всех участках одинакова.
Это видно из опыта, изображённого на рисунке.
Обрати внимание!
Безопасным для организма человека можно считать переменный ток силой не выше (0,05 A), ток силой более (0,05 — 0,1 A) опасен и может вызвать смертельный исход.
Источники:
Пёрышкин А.В. Физика, 8 класс// ДРОФА, 2013.
/class-fizika.narod.ru/8_28.htm /school.xvatit.com/index.php?title=%D0%A1%D0%B8%D0%BB%D0%B0_%D1%82%D0%BE%D0%BA%D0%B0
/physics.kgsu.ru/index.php?option=com_content&view=article&id=217&Itemid=72
/kamenskih2.narod.ru/untitled74.htm
Источник: /yaklass.ru/p/fizika/8-klass/elektricheskie-iavleniia-12351/sila-toka-ampermetr-14605/re-aff2020d-84ab-44b6-85cb-4dcb4940d9fc
Cила тока: формула
Содержание
- 1 Как возникает
- 2 Определение
- 3 Виды
- 4 Видео
Понятие о силе тока является основой современной электротехники. Без этих базовых знаний невозможно сделать расчеты к схемам, выполнить действия по электрике, предотвратить, выявить и устранить повреждение в цепи.
Определение силы тока через заряд
Как возникает
Для понимания, что такое сила тока, следует знать условие его возникновения – существование частиц со свободным зарядом. Он перемещается через проводник (его поперечное сечение) от одной точки к другой.
Физика силы тока заключается в упорядоченном движении электронов, на которые действует электрическое поле от источника питания.
Чем большее количество заряженных частиц переносится, и чем быстрее их передвижение в одном направлении, тем больший заряд дойдет до места назначения.
Движение электронов в проводнике
Помимо источника питания, элементами замкнутой цепи являются соединительные провода, по которым проходит электричество, и потребители энергии (установки, резисторы).
Дополнительная информация. В проводниках из металла в роли передатчика зарядов выступают электроны, газообразных – ионы, жидких – перенесение заряженных частиц выполняется с помощью обоих видов частиц. Нарушение порядка прохождения говорит о хаотичном движении зарядов, цепь при котором станет обесточенной.
Определение
Сила тока в проводнике – это количество электричества, перемещаемое через поперечное сечение за единичный интервал времени. Чтобы увеличить данное значение, нужно изъять из схемы лампу либо повысить магнитное поле, создаваемое батарейкой.
Подключаем трансформатор тока
Единицей измерения силы электрического тока по международной системе СИ (Systеme International) считается ампер (А), названный по фамилии выдающегося французского научного деятеля XIX века Андре-Мари Ампера.
Дополнительная информация. Ампер – достаточно внушительная электрическая мера. Для жизни человека представляет смертельную опасность токовая величина до 0,1A. Горящая бытовая лампочка на 100 Вт пропускает электричество примерно в 0,5 А. В комнатном обогревателе это значение доходит до 10 А, портативному калькулятору будет достаточной одна тысячная доля ампера.
В электротехнической практике замеры малых величин могут выражаться в микро,- и миллиамперах.
Силу тока находят измерительным приспособлением (ампер,- или гальванометром), последовательно включая его в нужный участок цепи. Малые величины измеряют микро,- или миллиамперметром. Основными методами нахождения количества электричества при помощи приборов являются:
- Магнитоэлектрический – при неизменной токовой величине. Такой способ отличают повышенная точность и малое потребление энергии;
- Электромагнитный – для стационарных и изменяющихся величин. При использовании этого метода сила тока в цепи находится в результате преобразования магнитного поля в выходной сигнал модуляционного датчика;
- Косвенный – основан на замере напряжения при известном сопротивлении. Далее вычисляют искомую величину по закону Ома, показанному ниже.
Формула и чтение закона Ома
Согласно определению, силу тока (I) можно найти по формуле:
I = q/t, где:
- q – заряд, идущий поперек проводника (Кл);
- t – длительность времени, затраченного на перемещение частиц (с).
Формула силы тока читается следующим образом: необходимая величина I – это отношение прошедшего через проводник заряда к используемому отрезку времени.
Обратите внимание! Сила тока определяется не только через заряд, но и расчетными формулами на основе закона Ома, который гласит: сила электричества прямо пропорциональна напряжению проводника и обратно пропорциональна его сопротивлению.
Формула закона Ома поможет найти силу тока, которая выглядит отношением:
I = U / R, здесь:
- U – напряжение (В);
- R – сопротивление (Ом).
Эта установленная связь физических величин используется для различных расчетов:
- учитывающих характеристики источника питания;
- для вычислений в цепях токов любого направления;
- для многофазных цепей.
Обратите внимание! Если проводники соединяются последовательным способом, то электричество каждого из них равно. Параллельное соединение предусматривает количество амперов, которое складывается из суммы токовых значений каждого проводника.
Как найти мощность (скорость передачи или преобразования энергии) с помощью токового значения? Для этого нужно воспользоваться формулой:
Р = U*I, где умножаемые значения упоминались выше.
Виды
Как работает и как выбрать трансформатор тока
При постоянном и переменном электричестве его сила бывает разного характера. Для цепи с движением частиц в постоянном направлении все параметры остаются неизменными. Переменный вид способен менять свою величину при одном и том же или меняющемся направлении. Количество электричества при этом бывает:
- мгновенным, зависящим от амплитудной величины и частоты колебаний, связанной с угловой частотой;
- амплитудным – максимальным значением мгновенной силы тока за определенный период;
- эффективным – при превращении энергии количество теплоты от обоих видов тока одинаково.
Электросети бытового назначения пропускают переменный ток, преобразующийся в постоянный при прохождении через блок питания электроприбора (компьютера, телевизора).
Величина силы тока – понятие, тесно связанное с электрической энергией, имеющей огромное значение для сферы быта, народного хозяйства, объектов стратегического назначения. Более того, электроэнергетика является экономической основой государства и определяющим вектором развития внутри страны и на международном уровне.
Видео
Генератор тока переменного
Источник: /amperof.ru/elektroenergia/cila-toka-formula.html
Сила тока
Думаю, вы не раз слышали такое словосочетание, как «сила тока». А для чего нужна сила? Ну как для чего, для того чтобы совершать полезную или бесполезную работу. Главное, чтобы что-то делать.
Наше тело тоже обладает силой. У кого-то сила такая, что может одним ударом разбить кирпич в пух и в прах, другой не сможет поднять даже и ложку.
Так вот, дорогие мои читатели, электрический ток тоже обладает силой.
Представьте себе шланг, с которым вы поливаете свой огород.
Пусть шланг — это провод, а вода в нем — электрический ток. Мы чуть-чуть приоткрыли краник и вода побежала по шлангу. Медленно, но все таки побежала. Сила струи очень слабая. А давайте теперь откроем краник на полную катушку. В результате струя хлынет с такой силой, что можно даже полить соседский огород.
А теперь представьте, что вы наполняете ведро.
Напором воды из краника или шланга вы его быстрее наполните? Диаметр шланга и краника при этом одинаковы
Разумеется, напором из желтого шланга! Но почему так происходит? Все дело в том, что объем воды за равный промежуток времени из краника и желтого шланга выйдет тоже разный.
Или иными словами, из шланга количество молекул воды выбежит намного больше, чем из краника за одно и то же время.
Что такое сила тока
С проводами точно такая же история). То есть за равный промежуток времени количество электронов, бегущих по проводу может быть абсолютно разное. Отсюда можно вывести определение силы тока.
Итак, сила тока — это количество электронов, проходящих через площадь поперечного сечения проводника за единицу времени, ну скажем, за секунду.
Ниже на рисунке заштрихована зелеными линиями та самая площадь поперечного сечения провода, через который бежит электрический ток.
И чем бОльшее количество электронов «пробежит» по проводу через поперечное сечение проводника за какое-то время, тем больше будет сила тока в проводнике.
Или иначе формулой для чайника:
где
I — собственно сила тока
N — количество электронов
t — период времени, за которое эти электроны пробегут через поперечное сечение проводника.
Сила тока измеряется в так называемых Амперах, в честь французского ученого Андре-Мари Ампера.
Имейте также ввиду, что каждый отдельно взятый шланг выдерживает только определенный максимальный поток воды, иначе он или где-то продырявиться от такого напора, либо его просто разнесет по кускам. Так же и с проводами.
Мы должны знать, какой максимальный ток мы можем прогонять через этот провод. Например, для медного провода сечением в 1мм2 нормальное значение составляет 10 Ампер. Если мы будем подавать больше, то провод либо начнет греться, либо плавиться. На этом принципе завязаны плавкие предохранители.
Поэтому, силовые кабели, через которые «бегут» сотни и тысячи ампер, берут большого диаметра и стараются делать из меди, так как ее удельное сопротивление очень мало.
Также про силу тока можете прочитать в более информативной статье.
Источник: /RusElectronic.com/sila-toka/
16. Электрический ток. Сила тока. Плотность тока
Электрический
ток — направленное движение электрически
заряженных частиц под воздействием
электрического поля.
Сила
тока (I) — скалярная величина, равная
отношению заряда (q), прошедшего через
поперечное сечение проводника, к
промежутку времени (t), в течение которого
шёл ток.
I=q/t,
где I— сила тока, q — заряд, t — время.
Единица
измерения силы тока в системе СИ: [I]=1A
(ампер)
17. Источники тока. Эдс источника
Источник
тока — это устройство, в котором происходит
преобразование какого-либо вида энергии
в электрическую энергию.
ЭДС
— энергетическая характеристика
источника. Это физическая величина,
равная отношению работы, совершенной
сторонними силами при перемещении
электрического заряда по замкнутой
цепи, к этому заряду:
Измеряется
в вольтах (В).
Источник
ЭДС — двухполюсник, напряжение на
зажимах которого не зависит от тока,
протекающего через источник и равно
его ЭДС. ЭДС источника может быть задана
либо постоянным, либо как функция
времени, либо как функция от внешнего
управляющего воздействия.
18.
Закон
Ома:
сила тока, текущего по однородному
участку проводника, прямо пропорциональна
падению напряжения на проводнике:
-закон
Ома в интегральной форме
R – электрическое сопротивление
проводника
Величина,
обратная сопротивлению, называется
проводимостью. Величина,
обратная удельному сопротивлению,
называется удельной проводимостью: Единица,
обратная Ом, называется Сименсом [См].
—
закон
Ома в дифференциальной форме.
19. Обобщенный закон Ома
Обобщенный
закон Ома определяет
связь между основными электрическими
величинами на участке цепи постоянного
тока, содержащем резистор и идеальный
источник ЭДС (рис.1.2):
;
Формула
справедлива для указанных на рис.1.2
положительных направлений падения
напряжения на участке цепи (Uab),
идеального источника ЭДС (Е)
и положительного направления тока (I).
Закон
Джоуля-Ленца
Выражение закона Джоуля — Ленца
Интегральная форма закона
Словесное определение закона Джоуля — Ленца
Если принять, что сила тока и сопротивление проводника не меняется в течение времени, то закон Джоуля — Ленца можно записать в упрощенном виде:
Применив закон Ома и алгебраические преобразования, получаем приведенные ниже эквивалентные формулы:
Эквивалентные выражения теплоты согласно закона Ома
Словесное определение закона Джоуля — Ленца
Если
принять, что сила тока и сопротивление
проводника не меняется в течение времени,
то закон Джоуля — Ленца можно записать
в упрощенном виде:
20.Магни́тное
по́ле—
силовое поле,
действующее на движущиесяэлектрические
заряды и на тела, обладающиемагнитным
моментом, независимо от состояния ихдвижения;
магнитная составляющаяэлектромагнитного
поля
Магнитное
поле может создаваться током
заряженных частиц и/илимагнитными
моментамиэлектроноватомах (и
магнитными моментами другихчастиц,
что обычно проявляется в существенно
меньшей степени) (постоянные
магниты).
Кроме
этого, оно возникает в результате
изменения во времени электрического
поля.
Основной
силовой характеристикой магнитного
поля является вектор
магнитной индукции(вектор
индукции магнитного поля). С математической
точки зрения— векторное
поле, определяющее и конкретизирующее
физическое понятие магнитного поля.
Нередко вектор магнитной индукции
называется для краткости просто магнитным
полем (хотя, наверное, это не самое
строгое употребление термина).
Ещё
одной фундаментальной характеристикой
магнитного поля (альтернативной магнитной
индукции и тесно с ней взаимосвязанной,
практически равной ей по физическому
значению) является векторный
потенциал.
Вместе,
магнитное и электрическоеполя
образуют электромагнитное
поле,
проявлениями которого являются, в
частности свети
все другие электромагнитные
волны.
Магнитное
поле создаётся (порождается) током
заряженных частиц
или изменяющимся во времени электрическим
полем,
или собственными магнитными
моментамичастиц
(последние для единообразия картины
могут быть формальным образом сведены
к электрическим токам)
Графическое
изображение магнитных полей
Для
графического изображения магнитных
полей используются линии магнитной
индукции. Линия магнитной индукции –это
линия, в каждой точке которой вектор
магнитной индукции направлен по
касательной к ней.
Источник: /StudFiles.net/preview/6467997/page:5/
Электрический ток. Сила тока — Класс!ная физика
«Физика — 10 класс»
Электрический ток — направленное движение заряженных частиц. Благодаря электрическому току освещаются квартиры, приводятся в движение станки, нагреваются конфорки на электроплитах, работает радиоприемник и т. д.
Рассмотрим наиболее простой случай направленного движения заряженных частиц — постоянный ток.
Какой электрический заряд называется элементарным?
Чему равен элементарный электрический заряд?
Чем различаются заряды в проводнике и диэлектрике?
При движении заряженных частиц в проводнике происходит перенос электрического заряда из одной точки в другую. Однако если заряженные частицы совершают беспорядочное тепловое движение, как, например, свободные электроны в металле, то переноса заряда не происходит (рис. 15.1, а).
Поперечное сечение проводника в среднем пересекает одинаковое число электронов в двух противоположных направлениях. Электрический заряд переносится через поперечное сечение проводника лишь в том случае, если наряду с беспорядочным движением электроны участвуют в направленном движении (рис. 15.1, б).
В этом случае говорят, что по проводнику идёт электрический ток.
Электрическим током называют упорядоченное (направленное) движение заряженных частиц.
Электрический ток имеет определённое направление.
За направление тока принимают направление движения положительно заряженных частиц.
Если перемещать нейтральное в целом тело, то, несмотря на упорядоченное движение огромного числа электронов и атомных ядер, электрический ток не возникнет. Полный заряд, переносимый через любое сечение, будет при этом равным нулю, так как заряды разных знаков перемещаются с одинаковой средней скоростью.
Направление тока совпадает с направлением вектора напряжённости электрического поля. Если ток образован движением отрицательно заряженных частиц, то направление тока считают противоположным направлению движения частиц.
Выбор направления тока не очень удачен, так как в большинстве случаев ток представляет собой упорядоченное движение электронов — отрицательно заряженных частиц. Выбор направления тока был сделан в то время, когда о свободных электронах в металлах ещё ничего не знали.
Действие тока.
Движение частиц в проводнике мы непосредственно не видим. О наличии электрического тока приходится судить по тем действиям или явлениям, которые его сопровождают.
Во-первых, проводник, по которому идёт ток, нагревается.
Во-вторых, электрический ток может изменять химический состав проводника: например, выделять его химические составные части (медь из раствора медного купороса и т. д.).
В-третьих, ток оказывает силовое воздействие на соседние токи и намагниченные тела. Это действие тока называется магнитным.
Так, магнитная стрелка вблизи проводника с током поворачивается. Магнитное действие тока в отличие от химического и теплового является основным, так как проявляется у всех без исключения проводников.
Химическое действие тока наблюдается лишь у растворов и расплавов электролитов, а нагревание отсутствует у сверхпроводников.
В лампочке накаливания вследствие прохождения электрического тока излучается видимый свет, а электродвигатель совершает механическую работу.
Сила тока.
Если в цепи идёт электрический ток, то это означает, что через поперечное сечение проводника всё время переносится электрический заряд.
Заряд, перенесённый в единицу времени, служит основной количественной характеристикой тока, называемой силой тока.
Если через поперечное сечение проводника за время Δt переносится заряд Δq, то среднее значение силы тока равно:
Средняя сила тока равна отношению заряда Δq, прошедшего через поперечное сечение проводника за промежуток времени Δt, к этому промежутку времени.
Если сила тока со временем не меняется, то ток называют постоянным.
Сила переменного тока в данный момент времени определяется также по формуле (15.1), но промежуток времени Δt в таком случае должен быть очень мал.
Сила тока, подобно заряду, — величина скалярная.
Она может быть как положительной, так и отрицательной. Знак силы тока зависит от того, какое из направлений обхода контура принять за положительное.
Сила тока I > 0, если направление тока совпадает с условно выбранным положительным направлением вдоль проводника. В противном случае I < 0.
Термин сила тока нельзя считать удачным, так как понятие сила, применяемое к току, не имеет никакого отношения к понятию сила в механике. Но термин сила тока был введён давно и утвердился в науке.
Связь силы тока со скоростью направленного движения частиц.
Пусть цилиндрический проводник (рис. 15.2) имеет поперечное сечение площадью S.
За положительное направление тока в проводнике примем направление слева направо. Заряд каждой частицы будем считать равным q0.
В объёме проводника, ограниченном поперечными сечениями 1 и 2 с расстоянием Δl между ними, содержится nSΔl частиц, где n — концентрация частиц (носителей тока). Их общий заряд в выбранном объёме q = q0nSΔl.
Если частицы движутся слева направо со средней скоростью υ, то за время все частицы, заключенные в рассматриваемом объёме, пройдут через поперечное сечение 2. Поэтому сила тока равна:
В СИ единицей силы тока является ампер (А).
Эта единица установлена на основе магнитного взаимодействия токов.
Измеряют силу тока амперметрами. Принцип устройства этих приборов основан на магнитном действии тока.
Скорость упорядоченного движения электронов в проводнике.
Найдём скорость упорядоченного перемещения электронов в металлическом проводнике. Согласно формуле (15.2) где е — модуль заряда электрона.
Пусть, например, сила тока I = 1 А, а площадь поперечного сечения проводника S = 10-6 м2.
Модуль заряда электрона е = 1,6 • 10-19 Кл. Число электронов в 1 м3 меди равно числу атомов в этом объёме, так как один из валентных электронов каждого атома меди является свободным.
Это число есть n ≈ 8,5 • 1028 м-3 (это число можно определить, если решить задачу 6 из § 54). Следовательно,
Как видите, скорость упорядоченного перемещения электронов очень мала. Она во много раз меньше скорости теплового движения электронов в металле.
Условия, необходимые для существования электрического тока.
Для возникновения и существования постоянного электрического тока в веществе необходимо наличие свободных заряженных частиц.
Однако этого ещё недостаточно для возникновения тока.
Для создания и поддержания упорядоченного движения заряженных частиц необходима сила, действующая на них в определённом направлении.
Если эта сила перестанет действовать, то упорядоченное движение заряженных частиц прекратится из-за столкновений с ионами кристаллической решётки металлов или нейтральными молекулами электролитов и электроны будут двигаться беспорядочно.
На заряженные частицы, как мы знаем, действует электрическое поле с силой:
Обычно именно электрическое поле внутри проводника служит причиной, вызывающей и поддерживающей упорядоченное движение заряженных частиц.
Только в статическом случае, когда заряды покоятся, электрическое поле внутри проводника равно нулю.
Если внутри проводника имеется электрическое поле, то между концами проводника в соответствии с формулой (14.21) существует разность потенциалов.
Как показал эксперимент, когда разность потенциалов не меняется во времени, в проводнике устанавливается постоянный электрический ток.
Вдоль проводника потенциал уменьшается от максимального значения на одном конце проводника до минимального на другом, так как положительный заряд под действием сил поля перемещается в сторону убывания потенциала.
Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский
Следующая страница «Закон Ома для участка цепи. Сопротивление»
Назад в раздел «Физика — 10 класс, учебник Мякишев, Буховцев, Сотский»
Законы постоянного тока — Физика, учебник для 10 класса — Класс!ная физика
Электрический ток. Сила тока — Закон Ома для участка цепи. Сопротивление — Электрические цепи. Последовательное и параллельное соединения проводников — Примеры решения задач по теме «Закон Ома. Последовательное и параллельное соединения проводников» — Работа и мощность постоянного тока — Электродвижущая сила — Закон Ома для полной цепи — Примеры решения задач по теме «Работа и мощность постоянного тока. Закон Ома для полной цепи»
Источник: /class-fizika.ru/10_a159.html
Сила тока и напряжение: что это и в чем разница
Многие из нас, еще со школьной скамьи не могут понять того, какие аспекты, отличают силу тока от напряжения.
Конечно, учителя постоянно утверждали то, что разница между двумя этими понятиями, является просто огромной.
Тем не менее, только некоторые взрослые имеют возможность похвастаться наличием соответствующих знаний и если вы к числу таковых не принадлежите, то вам самое время обратить внимание на наш, сегодняшний обзор.
Что такое сила тока и напряжение?
Для того, чтобы говорить о том, что собой представляет сила тока и какие нюансы с ней могут быть связаны, считаем необходимым обратить ваше внимание на то, чем она является сам по себе. Ток — это процесс, во время которого, под непосредственным воздействие электрического поля, начинает происходить движение неких, заряженных частиц.
В качестве последних, может выступать целый перечень всевозможных элементов, в этом плане, все зависит от конкретной ситуации. Так, к примеру, если речь идет об проводниках, то в этом случае, в качестве вышеупомянутых частиц, будут выступать электроны.
Возможно некоторые из вас этого и не знали, но ток активно используется в современной медицине и в частности для того, что избавить человека от целого перечня всевозможных болезней, та же эпилепсия, например. Незаменим ток также и в быту, ведь с его помощью, у вас дома горит свет и работают некоторые электроприборы.
Сила тока, в свою очередь, подразумевает под собой некую физическую величину. Обозначается она символом I.
В случае с напряжением, все обстоит куда сложнее, даже если сравнивать его с таким понятием, как «сила тока». Там предусмотрены единичные положительные заряды, которые должны перемещаться из разных точек.
Кроме этого, напряжением называют такую энергию, посредством которой и происходит вышеупомянутое перемещение. В школах, для понимания этого понятия, нередко приводят в пример течение воды, которое происходит между двумя банками.
В данной ситуации, в качестве тока, будет выступать сам поток воды, в то время, как напряжение сможет показывать разницу уровней в двух этих банках. По этому, течение будет наблюдаться до тех пор, пока оба уровни в банках не сравняются.
Что отличает силу тока от напряжения?
Осмелимся предположить, что в качестве основной разницы между двумя этими понятиями является их непосредственное определением:
- Под словами «сила тока» и «ток», в частности, представляют некое количество электричества, в то время, как напряжением принято считать меру потенциальной энергии. Простыми словами, два эти понятия достаточно сильно зависят друг от друга, сохраняя некоторые отличительные особенности, при всем этом. На их сопротивление влияет огромное количество самых разнообразных факторов. Важнейшим из них, является материал, из которого выполнен тот или иной проводник, внешние условия, а также температура.
- Некая разница предусмотрена также и в их получение. Так, если воздействие на электрические заряды, создает напряжение, то ток получается уже путем прикладывания напряжения между точками схемы. Кстати говоря, в качестве таковых приборов, могут выступать обыкновенные батареи или более продвинутые и удобные генераторы. По этой причине мы и можем говорить о том, что основные отличия двух этих понятий, сводятся к их определению, а также тому, что получаются они в результате совершенно разных процессов.
Путать не следовало бы ток также и вместе с энергопотреблением. Понятия эти являются совершенно разными и главным их отличием должна восприниматься именно мощность. Так, в том случае, если напряжение предназначено для того.
чтобы характеризовать потенциальную энергию, то в случае с током, энергия эта будет уже кинетической. В наших, современных реалиях, преимущественное большинство труб соответствует аналогиям из мира электричества. Речь идет об нагрузке, которая создается во время подключения лампочки или того же телевизора в сеть.
Во время этого, создается расход электричества, который в конечном итоге, приводит к появлению тока.
Конечно, в том случае, если в розетку вы не будете подключать никаких электроприборов, напряжение будет оставаться неизменным, в то самое время, как ток будет равняться нулю.
Ну а если не будет предусмотрено расхода, то какая вообще может идти речь о токе и какой-либо его силе? По этому, ток — это всего лишь некое количество электричества, в то время, как напряжением считается мера потенциальной энергии определенного источника электричества.
Интересное видео, где подробно объясняется разница между током и напряжением:
Источник: /vchemraznica.ru/sila-toka-i-napryazhenie-chto-eto-i-v-chem-raznica/
09-б. Сила электрического тока
§ 09-б. Сила электрического тока
В § 8-и мы рассмотрели опыт с лампочкй и двумя спиралями. Мы отметили, что под изменением силы тока будем понимать изменение потока электронов внутри проводника. Это относилось к твёрдым металлическим проводникам.
Напомним: в газообразных и жидких проводниках, например, в расплавленных или растворённых веществах электроток создаётся как электронами, так и ионами (см. § 8-й).
Важно: все движущиеся заряженные частицы являются носителями (переносчиками) электрического заряда.
Следовательно, под силой тока более верно понимать не общее количество самых разнообразных заряженных частиц (электронов и/или ионов), переносящих разные заряды за выбранное время наблюдения, а общий заряд, переносимый через проводник за единицу времени.
В виде формулы это выглядит так:
Формула для вычисления силы электрического тока через заряд и время его протекания.
I = | q | I – сила электрического тока в проводнике, А q – протекающий через проводник заряд, Кл t – время наблюдения, с |
t |
Итак, сила тока – физическая величина, показывающая заряд, проходящий через проводник за единицу времени.
Для измерения силы тока используют прибор амперметр (см. рисунок). Его всегда включают последовательно с тем участком цепи, в котором нужно измерить силу тока. Единица силы тока – 1 ампер (1 А). Её устанавливают, измеряя силу взаимодействия (притяжения или отталкивания) проводников с током.
В качестве пояснения посмотрите на рисунок с полосками фольги на странице, открывающей эту тему.
За 1 ампер принимают силу такого тока, который при прохождении по двум параллельным прямым проводникам бесконечной длины и малого диаметра, расположенным на расстоянии 1 м друг от друга в вакууме, вызывает на каждый 1 м длины силу взаимодействия 0,0000002 H.
Познакомимся теперь с законами распределения сил токов в цепях с различными соединениями проводников. Проведём опыты.
На схемах а-б-в лампа и реостат соединены последовательно. Сначала амперметр включён между реостатом и лампой (схема а), и сила тока обозначена символом Iобщ.
Затем амперметр помещён слева от реостата (схема б), и сила тока обозначена символом I1. После амперметр помещён слева от лампы (схема в), и сила тока обозначена символом I2.
Многократные измерения в этом и во всех других аналогичных опытах показывают, что во всех участках цепи с последовательным соединением проводников силы токов равны друг другу (то есть одинаковы):
Сила тока между последовательно соединёнными потребителями равна силам токов в проводах, подводящих энергию к потребителям.
На схемах г-д-е две лампы соединены параллельно. Сначала амперметр расположен в неразветвлённой части цепи (схема г), и сила тока обозначена символом Iобщ. Затем амперметр помещён слева от первой лампы (схема д), и сила тока обозначена I1.
После амперметр помещён слева от второй лампы (схема е), и сила тока обозначена I2.
Многократные измерения показывают, что сила тока в неразветвлённой части цепи с параллельным соединением проводников (общая сила тока) равна сумме сил токов во всех параллельных ветвях этой цепи:
Сила тока в проводах, подводящих энергию источника к параллельному соединению, равна сумме сил токов, идущих в каждом из потребителей.
Источник: /calcsbox.com/post/09-b-sila-elektriceskogo-toka.html
Напряжение и сила тока
Что такое напряжение, и сила тока?
Сегодня речь пойдет о самых базовых понятиях силы тока, напряжения, без общего понимания которых невозможно построение любого электротехнического устройства.
Итак, что же такое напряжение?
Попросту говоря напряжение — разница потенциала между двумя точками электрической цепи, измеряется в Вольтах. Стоит заметить что, напряжение всегда измеряется между двумя точками! То есть, когда говорят что напряжение на ножке контроллера 3 Вольта, подразумевается что разница потенциалов между ножкой контроллера и землей те самые 3 Вольта.
Земля(Масса, Ноль) — это точка электрической схемы с потенциалом 0 Вольт. Однако стоит заметить, что напряжение не всегда измеряется относительно земли.
Например, замерив напряжение между двумя выводами контроллера, мы получим разницу электрических потенциалов данных точек схемы.
То есть если на одной ножке 3 Вольта(То есть данная точка обладает потенциалом 3 Вольта относительно земли), а на второй 5Вольт(Опять же потенциал относительно земли), мы получим значение напряжения равное 2 вольтам, что равняется разнице потенциалов между точками 5 и 3 Вольта.
Из понятия напряжение вытекает следующее понятие — электрический ток. Из курса общей физики мы помним, что электрический ток есть направленное движение заряженных частиц по проводнику, измеряется в Амперах. Заряженные частицы движутся благодаря разнице потенциалов между точками.
Принято считать, что ток происходит из точки с большим зарядом, в точку, обладающую меньшим зарядом. То есть, именно напряжение (разность потенциалов) создает условия протекания тока. При отсутствии напряжения — невозможен ток, то есть между точками с равным потенциалом ток отсутствует.
На своем пути, ток встречает препятствие в виде сопротивления, что препятствует его протеканию. Сопротивление измеряется в Омах. Подробнее о нем мы поговорим в следующем уроке. Однако, между током, напряжением и сопротивлением уже давно выведена следующая зависимость:
Читайте также Стабилизаторы напряжения 5в.
Где I — Сила тока в Амперах,U — Напряжение в Вольтах,R — Сопротивление в Омах.
Данное соотношение называется законом Ома. Так же справедливы следующие выводы из закона Ома:
Если у Вас ещё остались вопросы, задавайте их в комментариях. Лишь благодаря Вашим вопросам Мы сможем улучшить материал представленный на данном сайте!
На этом всё, в следующем уроке поговорим о сопротивлении.
Любое копирование, воспроизведение, цитирование материала, или его частей разрешено только с письменного согласия администрации MKPROG.RU. Незаконное копирование, цитирование, воспроизведение преследуется по закону!
Источник: /mkprog.ru/osnovy/napryazhenie-i-sila-toka.html
Напряжение тока. Сила тока
В предыдущей статье, мы рассмотрели электрический ток. В этой статье будем рассматривать единицы измерения. Как без них? Но что бы не усложнять, рассмотрим только самые нужные, да и в дальнейшем в принципе только они понадобятся.
Мы уже знаем, что электрический ток, это движение частиц. Что бы эти частицы двигались, необходима внешняя направленная сила (например электрическое поле). И эту силу, которая двигает частицы, необходимо поддерживать.
Источник питания (источник напряжения, источник тока) имеют две клеммы или два полюса. Которые имеют разность потенциалов. Разность потенциалов, если простыми словами дать объяснение – это запас частиц, которые стремятся друг к другу.
То есть, при возможности частицы из клеммы (-) будут стремится к клемме с (+).
Рассмотрим на картинке.
наведите или кликните мышкой, для анимации
На картинке мы видим источник питания и проводник. Если наведем мышку на картинку, источник питания «крутиться», то есть там поддерживается какая то сила для переноса частиц.
Проводник не соединен к источнику питания, то есть цепь не замкнутая. Для того, что бы возник электрический ток — необходимо замкнуть цепь.
Рассмотрим на примере.
наведите или кликните мышкой, для анимации
В проводнике возникает электрический ток, то есть упорядоченное движение частиц. При перемещение заряженных частиц, что мы видим?
- 1. Какое количество частиц передвигаются.
- 2. Какая энергия тратится на перемещение частицы.
Сила тока
Сила тока — это величина, равная отношению количества заряда, проходящего через поперечное сечение проводника, к времени его прохождения.
То есть это ответ на наш первый вопрос, сколько зарядов проходит через поперечное сечение проводника, за определенное время.
Единица измерения силы тока – это Ампер (А).
Условное обозначение: I
Ниже на картинке отобразим этот момент:
наведите или кликните мышкой, для анимации
Напряжение тока
Сила тока, это больше количественный показатель. Для того что бы частицы перемещались, необходима энергия (работа).
Напряжение тока (электрическое напряжение) – это энергия расходуемая при перемещение заряда.
Простыми словами, это сила (давление) которое передвигает заряды по проводнику. Таким образом мы ответили на второй вопрос.
Единицы измерения напряжения тока – это Вольт (В).
Условное обозначение: U
наведите или кликните мышкой, для анимации
Мы теперь знаем что такое сила тока, напряжение тока и их условные обозначения. Еще хочу добавить, часто для объяснения этих процессов приводят пример с водой в трубе. Труба в данном случае это проводник, давление которое толкает воду это напряжение и количество воды (через поперечное сечение) это сила тока.
Источник: /simple-info.ru/electronic/osnovy-radiotekhniki/napryazhenie-toka-sila-toka/
Что такое сила тока, формулы
Определение 1
Ток является процессом, при протекании которого (под непосредственным влиянием электрического поля) начинает осуществляться движение некоторых заряженных частиц.
Такими заряженными частицами могут выступить разные элементы (все будет зависеть от ситуации). В случае с проводниками, например, в роли таковых частиц, выступят электроны.
Сила тока, таким образом, будет считаться движением заряженных частиц, ориентированных в одном направлении.
Понятие силы тока
Сила электрического тока будет представлять величину, характеризующую порядок движения электрических зарядов, численно равную количеству заряда $delta q$, который при этом протекает сквозь определенную поверхность $S$, (представляющую поперечное сечение проводника) за единицу времени:
$I=frac{delta q}{delta t}$
С целью определения силы тока $I$, требуется разделить электрический заряд $delta q$, прошедший через поперечное сечение проводника за время $delta t$, на это время.
Сила тока будет зависимой от заряда, переносимого посредством всех частиц, скорости их ориентированного в конкретном направлении движения и площади поперечного проводникового сечения.
Ничего непонятно?
Попробуй обратиться за помощью к преподавателям
Рассмотрим проводник с площадью поперечного сечения $S$. Заряд всех частиц обозначим $q_о$. В объеме проводника, ограниченного двумя сечениями, содержится $nSdelta l$ частиц, где $n$ представляет их концентрацию. Их общий заряд окажется таким:
$q={q_о}{nSdelta I}$
При условии движения частиц со средней скоростью $v$, за время $delta t=frac{delta I}{v}$ все частицы, заключенные в рассматриваемом объеме, успеют пройти через второе поперечное сечение, что означает соответствие силы тока расчетам по такой формуле:
$I={q_о}{nvS}$, где:
- $I$ — обозначение силы электричества, измеряется в Амперах (А) или Кулонах/секунду;
- $q$ — заряд, идущий по проводнику, единица измерения Кулоны (Кл);
В СИ единицу силы тока считают основной, а называется она ампер (А). Измерительным прибором выбран амперметр, чей принцип работы основывается на магнитном действии тока.
Замечание 1
При оценке скорости упорядоченного движения электронов внутри проводника, выполненная, согласно формуле для медного проводника при площади поперечного сечения в один квадратный миллиметр, мы получаем незначительную величину (0,1мм/с).
Отличие силы тока от напряжения
В физике различают такие понятия, как «сила тока» и «напряжение». Между ними существуют некоторые отличия, рассмотрение которых играет важное значение для понимания принципа действия силы тока.
Под «силой тока» понимается некоторое количество электричества, «напряжением», в то же время считается мера потенциальной энергии. При этом данные понятия достаточно сильно взаимозависимы. Важнейшими факторами, влияющими на них, являются:
- материал проводника;
- температура;
- внешние условия.
Различия можно наблюдать также и в способе их получения. Если в случае воздействия на электрические заряды создается напряжение, ток возникнет уже за счет действия напряжения между точками схемы.
Также существует различие и в сравнении с таким понятием, как «энергопотребление». Оно будет заключаться именно в мощности.
Так, если напряжение требуется для характеристики потенциальной энергии, то ток уже будет характеризовать энергию кинетическую.
Способы определения силы тока
Вычисляется сила тока на практике с задействованием специальных измерительных приборов либо посредством отдельных формул (при условии наличия исходных данных). Основной формулой, согласно которой рассчитывается сила тока, выглядит следующим образом:
$I=frac{q}{t}$
Существование электричества может быть постоянным (например, содержащийся в батарейке ток), а также переменным (ток в розетке). Освещение помещений и работа всех приборов электрического типа происходит именно посредством воздействия переменного электричества. Основным отличием переменного тока от постоянного выступает его более сильная склонность к трансформации.
Наглядным примером действия переменного тока может также послужить эффект включения люминесцентных ламп.
Так в процессе включения такой лампы начинает осуществляться движение заряженных частиц то вперед, то назад, что объясняет действие переменного тока.
Именно данный вид электричества считается наиболее распространенным в быту. Соответственно закону Ома, силу тока рассчитывают по формуле (для участка электроцепи):
$I=frac{U}{R}$
Сила тока, таким образом, оказывается прямо пропорциональна напряжению $U$, измеряемому в Вольтах, к участку цепи и обратно пропорциональной $R$-сопротивлению проводника указанного участка, выражаемому в Омах. Расчет силы электричества в полной цепи рассчитан таким образом:
$I=frac{E}{R+r}$, где:
- $Е$ — электродвижущая сила, ЭДС, Вольт;
- $R$ — внешнее сопротивление, Ом;
- $r$ — внутреннее сопротивление, Ом.
Основными способами определения силы тока посредством систем приборов на практике являются следующие:
- Магнитоэлектрический измерительный метод. Его преимуществами выступают высокая чувствительность и точность показаний при незначительном энергопотреблении. Указанный способ применим исключительно при определении величины силы постоянного тока.
- Электромагнитный способ заключается в нахождении силы токов переменного и постоянного типов путем процесса трансформации из электромагнитного поля в сигнал магнитного модульного датчика.
- Косвенный метод направлен на определение за счет вольтметра напряжения при определенном сопротивлении.
Замечание 2
С целью нахождения силы тока, на практике зачастую применяется специальный прибор амперметр. Такое устройство включается в разрывы электроцепи в требуемой точке измерения силы электрозаряда, прошедшего за некоторое время через сечение провода.
При определении величины силы малого электричества применяют миллиамперметры, микроамперметры, а также гальванометры, также подключаемые к определенному месту в цепи, где необходимо найти силу тока. Подключение может быть выполнено двумя способами:
- последовательным;
- параллельным.
Определение силы тока, который потребляется, считается не так часто востребованным, как измерение напряжения или сопротивления. В то же время, без вычисления физической величины силы тока становится невозможным расчет потребляемой мощности.
Источник: /spravochnick.ru/fizika/ponyatie_sily_v_fizike/chto_takoe_sila_toka_formuly/
Электрический ток
Основные теоретические сведения
Электрический ток. Сила тока. Сопротивление
К оглавлению…
В проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током. За направление электрического тока принято направление движения положительных свободных зарядов, хотя в большинстве случае движутся электроны – отрицательно заряженные частицы.
Количественной мерой электрического тока служит сила тока I – скалярная физическая величина, равная отношению заряда q, переносимого через поперечное сечение проводника за интервал времени t, к этому интервалу времени:
Если ток не постоянный, то для нахождения количества прошедшего через проводник заряда рассчитывают площадь фигуры под графиком зависимости силы тока от времени.
Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным. Сила тока измеряется амперметром, который включается в цепь последовательно. В Международной системе единиц СИ сила тока измеряется в амперах [А]. 1 А = 1 Кл/с.
Средняя сила тока находится как отношение всего заряда ко всему времени (т.е. по тому же принципу, что и средняя скорость или любая другая средняя величина в физике):
Если же ток равномерно меняется с течением времени от значения I1 до значения I2, то можно значение среднего тока можно найти как среднеарифметическое крайних значений:
Плотность тока – сила тока, приходящаяся на единицу поперечного сечения проводника, рассчитывается по формуле:
При прохождении тока по проводнику ток испытывает сопротивление со стороны проводника. Причина сопротивления – взаимодействие зарядов с атомами вещества проводника и между собой. Единица измерения сопротивления 1 Ом. Сопротивление проводника R определяется по формуле:
где: l – длина проводника, S – площадь его поперечного сечения, ρ – удельное сопротивление материала проводника (будьте внимательны и не перепутайте последнюю величину с плотностью вещества), которое характеризует способность материала проводника противодействовать прохождению тока. То есть это такая же характеристика вещества, как и многие другие: удельная теплоемкость, плотность, температура плавления и т.д. Единица измерения удельного сопротивления 1 Ом·м. Удельное сопротивление вещества – табличная величина.
Сопротивление проводника зависит и от его температуры:
где: R0 – сопротивление проводника при 0°С, t – температура, выраженная в градусах Цельсия, α – температурный коэффициент сопротивления. Он равен относительному изменению сопротивления, при увеличении температуры на 1°С. Для металлов он всегда больше нуля, для электролитов наоборот, всегда меньше нуля.
Диод в цепи постоянного тока
Диод – это нелинейный элемент цепи, сопротивление которого зависит от направления протекания тока. Обозначается диод следующим образом:
Стрелка в схематическом обозначении диода показывает, в каком направлении он пропускает ток. В этом случае его сопротивление равно нулю, и диод можно заменить просто на проводник с нулевым сопротивлением.
Если ток течет через диод в противоположном направлении, то диод обладает бесконечно большим сопротивлением, то есть не пропускает ток совсем, и является разрывом в цепи.
Тогда участок цепи с диодом можно просто вычеркнуть, так как ток по нему не идет.
Закон Ома. Последовательное и параллельное соединение проводников
К оглавлению…
Немецкий физик Г.Ом в 1826 году экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (то есть проводнику, в котором не действуют сторонние силы) сопротивлением R, пропорциональна напряжению U на концах проводника:
Величину R принято называть электрическим сопротивлением. Проводник, обладающий электрическим сопротивлением, называется резистором. Это соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.
Проводники, подчиняющиеся закону Ома, называются линейными. Графическая зависимость силы тока I от напряжения U (такие графики называются вольт-амперными характеристиками, сокращенно ВАХ) изображается прямой линией, проходящей через начало координат.
Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа.
Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.
Проводники в электрических цепях можно соединять двумя способами: последовательно и параллельно. У каждого способа есть свои закономерности.
1. Закономерности последовательного соединения:
Формула для общего сопротивления последовательно соединенных резисторов справедлива для любого числа проводников. Если же в цепь последовательно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:
2. Закономерности параллельного соединения:
Формула для общего сопротивления параллельно соединенных резисторов справедлива для любого числа проводников. Если же в цепь параллельно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:
Электроизмерительные приборы
Для измерения напряжений и токов в электрических цепях постоянного тока используются специальные приборы – вольтметры и амперметры.
Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов.
Любой вольтметр обладает некоторым внутренним сопротивлением RB.
Для того чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен.
Амперметр предназначен для измерения силы тока в цепи. Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток. Амперметр также обладает некоторым внутренним сопротивлением RA. В отличие от вольтметра, внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи.
ЭДС. Закон Ома для полной цепи
К оглавлению…
Для существования постоянного тока необходимо наличие в электрической замкнутой цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения.
Такие устройства называются источниками постоянного тока. Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами.
Природа сторонних сил может быть различной.
В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле.
Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.
При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу. Физическая величина, равная отношению работы Aст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):
Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).
Закон Ома для полной (замкнутой) цепи: сила тока в замкнутой цепи равна электродвижущей силе источника, деленной на общее (внутреннее + внешнее) сопротивление цепи:
Сопротивление r – внутреннее (собственное) сопротивление источника тока (зависит от внутреннего строения источника). Сопротивление R – сопротивление нагрузки (внешнее сопротивление цепи).
Падение напряжения во внешней цепи при этом равно (его еще называют напряжением на клеммах источника):
Важно понять и запомнить: ЭДС и внутреннее сопротивление источника тока не меняются, при подключении разных нагрузок.
Если сопротивление нагрузки равно нулю (источник замыкается сам на себя) или много меньше сопротивления источника, то тогда в цепи потечет ток короткого замыкания:
Сила тока короткого замыкания – максимальная сила тока, которую можно получить от данного источника с электродвижущей силой ε и внутренним сопротивлением r. У источников с малым внутренним сопротивлением ток короткого замыкания может быть очень велик, и вызывать разрушение электрической цепи или источника.
Например, у свинцовых аккумуляторов, используемых в автомобилях, сила тока короткого замыкания может составлять несколько сотен ампер. Особенно опасны короткие замыкания в осветительных сетях, питаемых от подстанций (тысячи ампер).
Чтобы избежать разрушительного действия таких больших токов, в цепь включаются предохранители или специальные автоматы защиты сетей.
Несколько источников ЭДС в цепи
Если в цепи присутствует несколько ЭДС подключенных последовательно, то:
1. При правильном (положительный полюс одного источника присоединяется к отрицательному другого) подключении источников общее ЭДС всех источников и их внутреннее сопротивление может быть найдено по формулам:
Например, такое подключение источников осуществляется в пультах дистанционного управления, фотоаппаратах и других бытовых приборах, работающих от нескольких батареек.
2. При неправильном (источники соединяются одинаковыми полюсами) подключении источников их общее ЭДС и сопротивление рассчитывается по формулам:
В обоих случаях общее сопротивление источников увеличивается.
При параллельном подключении имеет смысл соединять источники только c одинаковой ЭДС, иначе источники будут разряжаться друг на друга.
Таким образом суммарное ЭДС будет таким же, как и ЭДС каждого источника, то есть при параллельном соединении мы не получим батарею с большим ЭДС.
При этом уменьшается внутреннее сопротивление батареи источников, что позволяет получать большую силу тока и мощность в цепи:
В этом и состоит смысл параллельного соединения источников. В любом случае при решении задач сначала надо найти суммарную ЭДС и полное внутреннее сопротивление получившегося источника, а затем записать закон Ома для полной цепи.
Работа и мощность тока. Закон Джоуля-Ленца
К оглавлению…
Работа A электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в теплоту Q, выделяющееся на проводнике. Эту работу можно рассчитать по одной из формул (с учетом закона Ома все они следуют друг из друга):
Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж.Джоулем и Э.Ленцем и носит название закона Джоуля–Ленца. Мощность электрического тока равна отношению работы тока A к интервалу времени Δt, за которое эта работа была совершена, поэтому она может быть рассчитана по следующим формулам:
Работа электрического тока в СИ, как обычно, выражается в джоулях (Дж), мощность – в ваттах (Вт).
Энергобаланс замкнутой цепи
К оглавлению…
Рассмотрим теперь полную цепь постоянного тока, состоящую из источника с электродвижущей силой ε и внутренним сопротивлением r и внешнего однородного участка с сопротивлением R. В этом случае полезная мощность или мощность, выделяемая во внешней цепи:
Максимально возможная полезная мощность источника достигается, если R = r и равна:
Если при подключении к одному и тому же источнику тока разных сопротивлений R1 и R2 на них выделяются равные мощности то внутреннее сопротивление этого источника тока может быть найдено по формуле:
Мощность потерь или мощность внутри источника тока:
Полная мощность, развиваемая источником тока:
КПД источника тока:
Электролиз
К оглавлению…
Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы.
К электролитам относятся многие соединения металлов с металлоидами в расплавленном состоянии, а также некоторые твердые вещества.
Однако основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований.
Прохождение электрического тока через электролит сопровождается выделением вещества на электродах. Это явление получило название электролиза.
Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях.
Положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы – к положительному электроду (аноду).
Ионы обоих знаков появляются в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Это явление называется электролитической диссоциацией.
Закон электролиза был экспериментально установлен английским физиком М.Фарадеем в 1833 году. Закон Фарадея определяет количества первичных продуктов, выделяющихся на электродах при электролизе. Итак, масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит:
Величину k называют электрохимическим эквивалентом. Он может быть рассчитан по формуле:
где: n – валентность вещества, NA – постоянная Авогадро, M – молярная масса вещества, е – элементарный заряд. Иногда также вводят следующее обозначение для постоянной Фарадея:
Электрический ток в газах и в вакууме
К оглавлению…
Электрический ток в газах
В обычных условиях газы не проводят электрический ток. Это объясняется электрической нейтральностью молекул газов и, следовательно, отсутствием носителей электрических зарядов.
Для того чтобы газ стал проводником, от молекул необходимо оторвать один или несколько электронов. Тогда появятся свободные носителя зарядов — электроны и положительные ионы.
Этот процесс называется ионизацией газов.
Ионизировать молекулы газа можно внешним воздействием — ионизатором. Ионизаторами может быть: поток света, рентгеновские лучи, поток электронов или α-частиц.
Молекулы газа также ионизируются при высокой температуре.
Ионизация приводит к возникновению в газах свободных носителей зарядов — электронов, положительных ионов, отрицательных ионов (электрон, объединившийся с нейтральной молекулой).
Если создать в пространстве, занятом ионизированным газом, электрическое поле, то носители электрических зарядов придут в упорядоченное движение – так возникает электрический ток в газах. Если ионизатор перестает действовать, то газ снова становится нейтральным, так как в нем происходит рекомбинация – образование нейтральных атомов ионами и электронами.
Электрический ток в вакууме
Вакуумом называется такая степень разрежения газа, при котором можно пренебречь соударением между его молекулами и считать, что средняя длина свободного пробега превышает линейные размеры сосуда, в котором газ находится.
Электрическим током в вакууме называют проводимость межэлектродного промежутка в состоянии вакуума.
Молекул газа при этом столь мало, что процессы их ионизации не могут обеспечить такого числа электронов и ионов, которые необходимы для ионизации.
Проводимость межэлектродного промежутка в вакууме может быть обеспечена лишь с помощью заряженных частиц, возникших за счет эмиссионных явлений на электродах.
Источник: /educon.by/index.php/materials/phys/elektricheskij-tok